Cargando…

Least Squares Support Vector Machines.

This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors expla...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Suykens, Johan A. K.
Otros Autores: Gestel, Tony van, De Brabanter, Jos, De Moor, Bart, Vandewalle, Joos
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2002.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879025543
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2002 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1086442172 
020 |a 9789812776655 
020 |a 9812776656 
020 |z 9812381511  |q (alk. paper) 
020 |z 9789812381514 
029 1 |a AU@  |b 000055974314 
029 1 |a DEBBG  |b BV044179566 
029 1 |a DEBSZ  |b 405248717 
035 |a (OCoLC)879025543  |z (OCoLC)1086442172 
050 4 |a Q325.5  |b .L45 2002 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Suykens, Johan A. K. 
245 1 0 |a Least Squares Support Vector Machines. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2002. 
300 |a 1 online resource (308 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA. 
505 0 |a Preface ; Chapter 1 Introduction ; 1.1 Multilayer perceptron neural networks ; 1.2 Regression and classification ; 1.3 Learning and generalization ; 1.3.1 Weight decay and effective number of parameters ; 1.3.2 Ridge regression ; 1.3.3 Bayesian learning. 
505 8 |a 1.4 Principles of pattern recognition 1.4.1 Bayes rule and optimal classifier under Gaussian assumptions ; 1.4.2 Receiver operating characteristic ; 1.5 Dimensionality reduction methods ; 1.6 Parametric versus non-parametric approaches and RBF networks. 
505 8 |a 1.7 Feedforward versus recurrent network models Chapter 2 Support Vector Machines ; 2.1 Maximal margin classification and linear SVMs ; 2.1.1 Margin ; 2.1.2 Linear SVM classifier: separable case ; 2.1.3 Linear SVM classifier: non-separable case ; 2.2 Kernel trick and Mercer condition. 
505 8 |a 2.3 Nonlinear SVM classifiers 2.4 VC theory and structural risk minimization ; 2.4.1 Empirical risk versus generalization error ; 2.4.2 Structural risk minimization ; 2.5 SVMs for function estimation ; 2.5.1 SVM for linear function estimation. 
505 8 |a 2.5.2 SVM for nonlinear function estimation 2.5.3 VC bound on generalization error ; 2.6 Modifications and extensions ; 2.6.1 Kernels ; 2.6.2 Extension to other convex cost functions ; 2.6.3 Algorithms ; 2.6.4 Parametric versus non-parametric approaches. 
504 |a Includes bibliographical references (pages 269-286) and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algorithms. 
650 0 |a Kernel functions. 
650 0 |a Least squares. 
650 0 |a Machine learning. 
650 2 |a Algorithms 
650 2 |a Machine Learning 
650 6 |a Algorithmes. 
650 6 |a Noyaux (Mathématiques) 
650 6 |a Apprentissage automatique. 
650 7 |a algorithms.  |2 aat 
650 7 |a Algorithms  |2 fast 
650 7 |a Kernel functions  |2 fast 
650 7 |a Least squares  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Gestel, Tony van. 
700 1 |a De Brabanter, Jos. 
700 1 |a De Moor, Bart. 
700 1 |a Vandewalle, Joos. 
758 |i has work:  |a Least squares support vector machines (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGp4mhtFFGRBTPVyc6CPHy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789812381514 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681619  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681619 
994 |a 92  |b IZTAP