|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn879025543 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
140501s2002 si o 000 0 eng d |
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d EBLCP
|d DEBSZ
|d OCLCQ
|d ZCU
|d MERUC
|d U3W
|d OCLCO
|d OCLCF
|d ICG
|d INT
|d AU@
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1086442172
|
020 |
|
|
|a 9789812776655
|
020 |
|
|
|a 9812776656
|
020 |
|
|
|z 9812381511
|q (alk. paper)
|
020 |
|
|
|z 9789812381514
|
029 |
1 |
|
|a AU@
|b 000055974314
|
029 |
1 |
|
|a DEBBG
|b BV044179566
|
029 |
1 |
|
|a DEBSZ
|b 405248717
|
035 |
|
|
|a (OCoLC)879025543
|z (OCoLC)1086442172
|
050 |
|
4 |
|a Q325.5
|b .L45 2002
|
082 |
0 |
4 |
|a 006.31
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Suykens, Johan A. K.
|
245 |
1 |
0 |
|a Least Squares Support Vector Machines.
|
260 |
|
|
|a Singapore :
|b World Scientific Publishing Company,
|c 2002.
|
300 |
|
|
|a 1 online resource (308 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA.
|
505 |
0 |
|
|a Preface ; Chapter 1 Introduction ; 1.1 Multilayer perceptron neural networks ; 1.2 Regression and classification ; 1.3 Learning and generalization ; 1.3.1 Weight decay and effective number of parameters ; 1.3.2 Ridge regression ; 1.3.3 Bayesian learning.
|
505 |
8 |
|
|a 1.4 Principles of pattern recognition 1.4.1 Bayes rule and optimal classifier under Gaussian assumptions ; 1.4.2 Receiver operating characteristic ; 1.5 Dimensionality reduction methods ; 1.6 Parametric versus non-parametric approaches and RBF networks.
|
505 |
8 |
|
|a 1.7 Feedforward versus recurrent network models Chapter 2 Support Vector Machines ; 2.1 Maximal margin classification and linear SVMs ; 2.1.1 Margin ; 2.1.2 Linear SVM classifier: separable case ; 2.1.3 Linear SVM classifier: non-separable case ; 2.2 Kernel trick and Mercer condition.
|
505 |
8 |
|
|a 2.3 Nonlinear SVM classifiers 2.4 VC theory and structural risk minimization ; 2.4.1 Empirical risk versus generalization error ; 2.4.2 Structural risk minimization ; 2.5 SVMs for function estimation ; 2.5.1 SVM for linear function estimation.
|
505 |
8 |
|
|a 2.5.2 SVM for nonlinear function estimation 2.5.3 VC bound on generalization error ; 2.6 Modifications and extensions ; 2.6.1 Kernels ; 2.6.2 Extension to other convex cost functions ; 2.6.3 Algorithms ; 2.6.4 Parametric versus non-parametric approaches.
|
504 |
|
|
|a Includes bibliographical references (pages 269-286) and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Kernel functions.
|
650 |
|
0 |
|a Least squares.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
2 |
|a Algorithms
|
650 |
|
2 |
|a Machine Learning
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
6 |
|a Noyaux (Mathématiques)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a Algorithms
|2 fast
|
650 |
|
7 |
|a Kernel functions
|2 fast
|
650 |
|
7 |
|a Least squares
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
700 |
1 |
|
|a Gestel, Tony van.
|
700 |
1 |
|
|a De Brabanter, Jos.
|
700 |
1 |
|
|a De Moor, Bart.
|
700 |
1 |
|
|a Vandewalle, Joos.
|
758 |
|
|
|i has work:
|a Least squares support vector machines (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGp4mhtFFGRBTPVyc6CPHy
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9789812381514
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681619
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1681619
|
994 |
|
|
|a 92
|b IZTAP
|