Cargando…

Introduction to Lambda Trees.

The theory of?-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R -tree was given by Tits in 1977. The importance of?-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely gen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chiswell, Ian
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879025483
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9789812810533 
020 |a 9812810536 
029 1 |a AU@  |b 000055974306 
029 1 |a DEBBG  |b BV044179560 
029 1 |a DEBSZ  |b 405248660 
035 |a (OCoLC)879025483 
050 4 |a QA166.2  |b .I59 2001 
082 0 4 |a 512.2 
049 |a UAMI 
100 1 |a Chiswell, Ian. 
245 1 0 |a Introduction to Lambda Trees. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (328 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a The theory of?-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R -tree was given by Tits in 1977. The importance of?-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R -trees. In that work they were led to define the idea of a?-tree, where? is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R -trees, notably Rips' theorem on free actions. There has also been some. 
505 8 |a 5. Hyperbolic surfaces 6. Spaces of actions on R-trees ; Chapter 5. Free Actions ; 1. Introduction ; 2. Harrison's Theorem ; 3. Some examples ; 4. Free actions of surface groups ; 5. Non-standard free groups ; Chapter 6. Rips' Theorem ; 1. Systems of isometries. 
505 8 |a 2. Minimal components 3. Independent generators ; 4. Interval exchanges and conclusion ; References ; Index of Notation ; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Group theory. 
650 0 |a Lambda algebra. 
650 0 |a Trees (Graph theory) 
650 6 |a Théorie des groupes. 
650 6 |a Lambda-algèbre. 
650 6 |a Arbres (Théorie des graphes) 
650 7 |a Group theory  |2 fast 
650 7 |a Lambda algebra  |2 fast 
650 7 |a Trees (Graph theory)  |2 fast 
758 |i has work:  |a Introduction to [lambda]-trees (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvBrfxKjGYfFP79xRVxTb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810243869 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681612  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681612 
994 |a 92  |b IZTAP