Cargando…

Atomic Force Microscopy for Biologists.

Atomic force microscopy (AFM) is part of a range of emerging microscopic methods for biologists which offer the magnification range of both the light and electron microscope, but allow imaging under the ""natural"" conditions usually associated with the light microscope. To biolo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Morris, Victor J.
Otros Autores: Kirby, Andrew R., Gunning, A. Patrick
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2009.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Acknowledgements
  • CHAPTER 1 AN INTRODUCTION
  • CHAPTER 2 APPARATUS
  • 2.1. The atomic force microscope
  • 2.2. Piezoelectric scanners
  • 2.3. Probes and cantilevers
  • 2.3.1. Cantilever geometry
  • 2.3.2. Tip shape
  • 2.3.3. Tip functionality
  • 2.4. Sample holders
  • 2.4.1. Liquid cells
  • 2.5. Detection methods
  • 2.5.1. Optical detectors: laser beam deflection
  • 2.5.2. Optical detectors: interferometry
  • 2.5.3. Electrical detectors: electron tunnelling
  • 2.5.4. Electrical detectors: capacitance
  • 2.5.5. Electrical detectors: piezoelectric cantilevers
  • 2.6. Control systems
  • 2.6.1. AFM electronics
  • 2.6.2. Operation of the electronics
  • 2.6.3. Feedback control loops
  • 2.6.4. Design limitations
  • 2.6.5. Enhancing the performance of large scanners
  • 2.7. Vibration isolation: thermal and mechanical
  • 2.8. Calibration
  • 2.8.1. Piezoelectric scanner non-linearity
  • 2.8.2. Tip related factors: convolution
  • 2.8.3. Calibration standards
  • 2.8.4. Tips for scanning a calibration specimen
  • 2.9. Integrated AFMs
  • 2.9.1. Combined AFM-light microscope (AFM-LM)
  • 2.9.2. 'Submarine' AFM
  • the combined AFM
  • Langmuir Trough
  • 2.9.3. Combined AFM-surface plasmon resonance (AFM-SPR)
  • 2.9.4. Cryo-AFM
  • References
  • Useful information sources
  • CHAPTER 3 BASIC PRINCIPLES
  • 3.1. Forces
  • 3.1.1. The Van der Waals force and force-distance curves
  • 3.1.2. The electrostatic force
  • 3.1.3. Capillary and adhesive forces
  • 3.1.4. Double layer forces
  • 3.2. Imaging modes
  • 3.2.1. Contact dc mode
  • 3.2.2. Ac modes: Tapping and non-contact
  • Tapping in air
  • Tapping under liquid
  • True, non-contact ac mode
  • Tuning the cantilever
  • Influence of drive frequency
  • 3.2.3. Deflection mode
  • 3.3. Image types
  • 3.3.1. Topography
  • 3.3.2. Frictional force
  • 3.3.3. Phase
  • 3.4. Substrates
  • 3.4.1. Mica
  • 3.4.2. Glass.
  • 3.4.3. Graphite
  • 3.5. Common problems
  • 3.5.1. Thermal drift
  • 3.5.2. Multiple tip effects
  • 3.5.3. The 'pool' artifact
  • 3.5.4. Optical interference on highly reflective samples
  • 3.5.5. Sample roughness
  • 3.5.6. Sample mobility
  • 3.5.7. Imaging under liquid
  • 3.6. Getting started
  • 3.6.1. DNA
  • 3.6.2. Troublesome large samples
  • 3.7. Image optimisation
  • 3.7.1. Grey levels and colour tables
  • 3.7.2. Brightness and contrast
  • 3.7.3. High and low pass filtering
  • 3.7.4. Normalisation and plane fitting
  • 3.7.5. Despike
  • 3.7.6. Fourier filtering
  • 3.7.7. Correlation averaging
  • 3.7.8. Stereographs and anaglyphs
  • 3.7.9. Do your homework!
  • References
  • CHAPTER 4 MACROMOLECULES
  • 4.1. Imaging methods
  • 4.1.1. Tip adhesion, molecular damage and displacement
  • 4.1.2. Depositing macromolecules onto substrates
  • 4.1.3. Metal coated samples
  • 4.1.4. Imaging in air
  • 4.1.5. Imaging under non-aqueous liquids
  • 4.1.6. Binding molecules to the substrate
  • 4.1.7. Imaging under water or buffers
  • 4.2. Nucleic acids: DNA
  • 4.2.1. Imaging DNA
  • 4.2.2. DNA conformation, size and shape
  • 4.2.3. DNA-protein interactions
  • 4.2.4. Location and mapping of specific sites
  • 4.2.5. Chromosomes
  • 4.3. Nucleic acids: RNA
  • 4.4. Polysaccharides
  • 4.4.1. Imaging polysaccharides
  • 4.4.2. Size, shape, structure and conformation
  • 4.4.3. Aggregates, networks and gels
  • 4.4.4. Cellulose, plant cell walls and starch
  • 4.4.5. Proteoglycans and mucins
  • 4.5. Proteins
  • 4.5.1. Globular proteins
  • 4.5.2. Antibodies
  • 4.5.3. Fibrous proteins
  • References: Selected Books and Reviews
  • Selected Research Papers
  • CHAPTER 5 INTERFACIAL SYSTEMS
  • 5.1. Introduction to interfaces
  • 5.1.1. Surface activity
  • 5.1.2. AFM of interfacial systems
  • 5.1.3. The Langmuir trough
  • 5.1.4. Langmuir-Blodgett film transfer
  • 5.2. Sample preparation.
  • 5.2.1. Cleaning protocols: glassware and trough
  • 5.2.2. Substrates
  • 5.2.3. Performing the dip
  • 5.3. Phospholipids
  • 5.3.1. Early AFM studies of phospholipid films
  • 5.3.2. Modification of phospholipid bilayers with the AFM
  • 5.3.3. Studying intrinsic bilayer properties by AFM
  • 5.3.4. Ripple phases in phospholipid bilayers
  • 5.3.5. Mixed phospholipid films
  • 5.3.6. Effect of supporting layers
  • 5.3.7. Dynamic processes of phopholipid layers
  • 5.4. Liposomes and intact vesicles
  • 5.5. Lipid-protein mixed films
  • 5.5.1. High resolution studies of phospholipid bilayers
  • 5.6. Miscellaneous lipid films/surfactant films
  • 5.7. Interfacial protein films
  • 5.7.1. Specific precautions
  • 5.7.2. AFM studies of interfacial protein films
  • References
  • CHAPTER 6 ORDERED MACROMOLECULES
  • 6.1. Three-dimensional crystals
  • 6.1.1. Crystalline cellulose
  • 6.1.2. Protein crystals
  • 6.1.3. Nucleic acid crystals
  • 6.1.4. Viruses and virus crystals
  • 6.2. Two dimensional protein crystals: an introduction
  • 6.2.1. What does AFM have to offer?
  • 6.2.2. Sample preparation: membrane proteins
  • 6.2.3. Sample preparation: soluble proteins
  • 6.3. AFM studies of 2D membrane protein crystals
  • 6.3.1. Purple membrane (bacteriorhodopsin)
  • 6.3.2. Gap junctions
  • 6.3.3. Photosynthetic protein membranes
  • 6.3.4. ATPase in kidney membranes
  • 6.3.5. OmpFporin
  • 6.3.6. Bacterial Slayers
  • 6.3.7. Bacteriophage 29 head-tail connector
  • 6.3.8. AFM imaging of membrane dynamics
  • 6.3.9. Force spectroscopy of membrane proteins
  • 6.3.10. Gas vesicle protein
  • 6.4. AFM studies of 2D crystals of soluble proteins
  • 6.4.1. Imaging conditions
  • 6.4.2. Electrostatic considerations
  • References
  • CHAPTER 7 CELLS, TISSUE AND BIOMINERALS
  • 7.1. Imaging methods
  • 7.1.1. Sample preparation
  • 7.1.2. Force mapping and mechanical measurements.
  • 7.2. Microbial cells: bacteria, spores and yeasts
  • 7.2.1. Bacteria
  • 7.2.2. Yeasts
  • 7.3. Blood cells
  • 7.3.1. Erythrocytes
  • 7.3.2. Leukocytes and lymphocytes
  • 7.3.3. Platelets
  • 7.4. Neurons and Glial cells
  • 7.5. Epithelial cells
  • 7.6. Non-confluent renal cells
  • 7.7. Endothelial cells
  • 7.8. Cardiocytes
  • 7.9. Other mammalian cells
  • 7.10. Plant cells
  • 7.11. Tissue
  • 7.11.1. Embedded sections
  • 7.11.2. Embedment-free sections
  • 7.11.3. Hydrated sections
  • 7.11.4. Freeze-fracture replicas
  • 7.11.5. Immunolabelling
  • 7.12. Biominerals
  • 7.12.1. Bone, tendon and cartilage
  • 7.12.2. Teeth
  • 7.12.3. Shells
  • References: selected reviews
  • Selected references
  • CHAPTER 8 OTHER PROBE MICROSCOPES
  • 8.1. Overview
  • 8.2. Scanning tunnelling microscope (STM)
  • 8.3. Scanning near-field optical microscope (SNOM)
  • 8.4. Scanning ion conductance microscope (SICM)
  • 8.5. Scanning thermal microscope (SThM)
  • 8.6. Optical tweezers and the photonic force microscope (PPM)
  • References
  • CHAPTER 9 FORCE SPECTROSCOPY
  • 9.1. Force measurement with the AFM
  • 9.2. First steps in force spectroscopy: from raw data to force-distance curves
  • 9.2.1. Quantifying cantilever displacement
  • 9.2.2. Determining cantilever spring constants
  • 9.2.3. Anatomy of a force-distance curve
  • 9.3. Pulling methods
  • 9.3.1. Intrinsic elastic properties of molecules
  • 9.3.2. Molecular recognition force spectroscopy
  • 9.3.3. Chemical force microscopy (CPM)
  • 9.4. Pushing methods
  • 9.4.1. Colloidal probe microscopy (CPM)
  • 9.4.2. How to make a colloid probe cantilever assembly
  • 9.4.3. Deformation and indentation methods
  • 9.5. Analysis of force-distance curves
  • 9.5.1. Worm-like chain and freely jointed chain models
  • 9.5.2. Molecular interactions
  • 9.5.3. Deformation analysis
  • 9.5.4. Adhesive force at pull-off.
  • 9.5.5. Elastic indentation depth, and contact radius, a, during deformation
  • 9.5.6. Contact radius at zero load
  • 9.5.7. Colloidal forces
  • References
  • SPM Books
  • Index.