Cargando…

Symplectic Geometry and Mirror Symmetry : Proceedings of the 4th KIAS Annual International Conference.

In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's constructi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fukaya, K.
Otros Autores: Oh, Y. G., Ono, K., Tian, Gang, 1958-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn879024110
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9789812799821 
020 |a 9812799826 
029 1 |a DEBBG  |b BV044179100 
029 1 |a DEBSZ  |b 405246102 
035 |a (OCoLC)879024110 
050 4 |a QC174.17.S9  |b K43 2000 
082 0 4 |a 516.36 
049 |a UAMI 
100 1 |a Fukaya, K. 
245 1 0 |a Symplectic Geometry and Mirror Symmetry :  |b Proceedings of the 4th KIAS Annual International Conference. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (510 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A 8 -category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagran. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mirror symmetry  |v Congresses. 
650 0 |a Symplectic groups  |v Congresses. 
650 6 |a Symétrie du miroir  |v Congrès. 
650 6 |a Groupes symplectiques  |v Congrès. 
650 7 |a Mirror symmetry  |2 fast 
650 7 |a Symplectic groups  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Oh, Y. G. 
700 1 |a Ono, K. 
700 1 |a Tian, Gang,  |d 1958-  |1 https://id.oclc.org/worldcat/entity/E39PCjDrJW367Dq7qKPm77THQ3 
758 |i has work:  |a Symplectic geometry and mirror symmetry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH68HgjGCBJfcg8JcW8hBP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810247140 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679850  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679850 
994 |a 92  |b IZTAP