Cargando…

Dynamics and Mission Design Near Libration Points - Vol Ii : Fundamentals.

It is well known that the restricted three-body problem has triangular equilibrium points. These points are linearly stable for values of the mass parameter, æ, below Routh's critical value, æ 1 . It is also known that in the spatial case they are nonlinearly stable, not for all the initial con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Llibre, J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Colección:World Scientific monograph series in mathematics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface ; Chapter 1 Bibliographical Survey ; 1.1 Equations. The Triangular Equilibrium Points and their Stability ; 1.2 Numerical Results for the Motion Around L4 and L5 ; 1.3 Analytical Results for the Motion Around L4 and L5 ; 1.3.1 The Models Used.
  • 1.4 Miscellaneous Results 1.4.1 Station Keeping at the Triangular Equilibrium Points ; 1.4.2 Some Other Results ; Chapter 2 Periodic Orbits of the Bicircular Problem and Their Stability ; 2.1 Introduction ; 2.2 The Equations of the Bicircular Problem.
  • 2.3 Periodic Orbits with the Period of the Sun 2.4 The Tools: Numerical Continuation of Periodic Orbits and Analysis of Bifurcations ; 2.4.1 Numerical Continuation of Periodic Orbits for Nonautonomous and Autonomous Equations.
  • 2.4.2 Bifurcations of Periodic Orbits: From the Autonomous to the Nonautonomous Periodic System 2.4.3 Bifurcation for Eigenvalues Equal to One ; 2.5 The Periodic Orbits Obtained by Triplication.
  • Chapter 3 Numerical Simulations of the Motion in an Extended Neighborhood of the Triangular Libration Points in the Earth-Moon System 3.1 Introduction ; 3.2 Simulations of Motion Starting at the Instantaneous Triangular Points at a Given Epoch.