Dynamics and Mission Design Near Libration Points - Vol Ii : Fundamentals.
It is well known that the restricted three-body problem has triangular equilibrium points. These points are linearly stable for values of the mass parameter, æ, below Routh's critical value, æ 1 . It is also known that in the spatial case they are nonlinearly stable, not for all the initial con...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific Publishing Company,
2001.
|
Colección: | World Scientific monograph series in mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface ; Chapter 1 Bibliographical Survey ; 1.1 Equations. The Triangular Equilibrium Points and their Stability ; 1.2 Numerical Results for the Motion Around L4 and L5 ; 1.3 Analytical Results for the Motion Around L4 and L5 ; 1.3.1 The Models Used.
- 1.4 Miscellaneous Results 1.4.1 Station Keeping at the Triangular Equilibrium Points ; 1.4.2 Some Other Results ; Chapter 2 Periodic Orbits of the Bicircular Problem and Their Stability ; 2.1 Introduction ; 2.2 The Equations of the Bicircular Problem.
- 2.3 Periodic Orbits with the Period of the Sun 2.4 The Tools: Numerical Continuation of Periodic Orbits and Analysis of Bifurcations ; 2.4.1 Numerical Continuation of Periodic Orbits for Nonautonomous and Autonomous Equations.
- 2.4.2 Bifurcations of Periodic Orbits: From the Autonomous to the Nonautonomous Periodic System 2.4.3 Bifurcation for Eigenvalues Equal to One ; 2.5 The Periodic Orbits Obtained by Triplication.
- Chapter 3 Numerical Simulations of the Motion in an Extended Neighborhood of the Triangular Libration Points in the Earth-Moon System 3.1 Introduction ; 3.2 Simulations of Motion Starting at the Instantaneous Triangular Points at a Given Epoch.