Cargando…

Dynamics and Mission Design Near Libration Points - Vol Ii : Fundamentals.

It is well known that the restricted three-body problem has triangular equilibrium points. These points are linearly stable for values of the mass parameter, æ, below Routh's critical value, æ 1 . It is also known that in the spatial case they are nonlinearly stable, not for all the initial con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Llibre, J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Colección:World Scientific monograph series in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn879023996
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d OCLCQ  |d YDXCP  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9789812810649 
020 |a 9812810641 
029 1 |a AU@  |b 000055974015 
029 1 |a DEBBG  |b BV044179027 
035 |a (OCoLC)879023996 
050 4 |a QB362.T5  |b D962 2001 
082 0 4 |a 521.3 
049 |a UAMI 
100 1 |a Llibre, J. 
245 1 0 |a Dynamics and Mission Design Near Libration Points - Vol Ii :  |b Fundamentals. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (159 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific Monograph Series in Mathematics 
588 0 |a Print version record. 
520 |a It is well known that the restricted three-body problem has triangular equilibrium points. These points are linearly stable for values of the mass parameter, æ, below Routh's critical value, æ 1 . It is also known that in the spatial case they are nonlinearly stable, not for all the initial conditions in a neighborhood of the equilibrium points L 4, L 5 but for a set of relatively large measures. This follows from the celebrated Kolmogorov-Arnold-Moser theorem. In fact there are neighborhoods of computable size for which one obtains "practical stability" in the sense that the massless partic. 
505 0 |a Preface ; Chapter 1 Bibliographical Survey ; 1.1 Equations. The Triangular Equilibrium Points and their Stability ; 1.2 Numerical Results for the Motion Around L4 and L5 ; 1.3 Analytical Results for the Motion Around L4 and L5 ; 1.3.1 The Models Used. 
505 8 |a 1.4 Miscellaneous Results 1.4.1 Station Keeping at the Triangular Equilibrium Points ; 1.4.2 Some Other Results ; Chapter 2 Periodic Orbits of the Bicircular Problem and Their Stability ; 2.1 Introduction ; 2.2 The Equations of the Bicircular Problem. 
505 8 |a 2.3 Periodic Orbits with the Period of the Sun 2.4 The Tools: Numerical Continuation of Periodic Orbits and Analysis of Bifurcations ; 2.4.1 Numerical Continuation of Periodic Orbits for Nonautonomous and Autonomous Equations. 
505 8 |a 2.4.2 Bifurcations of Periodic Orbits: From the Autonomous to the Nonautonomous Periodic System 2.4.3 Bifurcation for Eigenvalues Equal to One ; 2.5 The Periodic Orbits Obtained by Triplication. 
505 8 |a Chapter 3 Numerical Simulations of the Motion in an Extended Neighborhood of the Triangular Libration Points in the Earth-Moon System 3.1 Introduction ; 3.2 Simulations of Motion Starting at the Instantaneous Triangular Points at a Given Epoch. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Three-body problem. 
650 0 |a Lagrangian points. 
650 6 |a Problème à trois corps. 
650 6 |a Points de Lagrange. 
650 7 |a Lagrangian points  |2 fast 
650 7 |a Three-body problem  |2 fast 
776 0 8 |i Print version:  |z 9789810242749 
830 0 |a World Scientific monograph series in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679700  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679700 
938 |a YBP Library Services  |b YANK  |n 2915231 
994 |a 92  |b IZTAP