Cargando…

Topological Foundations of Electromagnetism.

Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barrett, Terence W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2008.
Colección:World Scientific series in contemporary chemical physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023915
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2008 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d CDX  |d STF  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d LEAUB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 313650835  |a 1086520193 
020 |a 9789812779977 
020 |a 9812779973 
020 |z 9812779965  |q (Cloth) 
029 1 |a AU@  |b 000058360795 
029 1 |a CDX  |b 9529355 
029 1 |a DEBBG  |b BV044179039 
029 1 |a DEBSZ  |b 405245696 
029 1 |a DEBSZ  |b 445580119 
035 |a (OCoLC)879023915  |z (OCoLC)313650835  |z (OCoLC)1086520193 
050 4 |a QC760 .B282 2008 
082 0 4 |a 537 
049 |a UAMI 
100 1 |a Barrett, Terence W. 
245 1 0 |a Topological Foundations of Electromagnetism. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2008. 
300 |a 1 online resource (196 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific Series in Contemporary Chemical Physics 
588 0 |a Print version record. 
520 |a Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field. 
504 |a Includes bibliographical references and index. 
505 0 |a Ch. 1. Electromagnetic phenomena not explained by Maxwell's equations. 1. Introduction. 2. What is a gauge? 3. Empirical reasons for questioning the completeness of Maxwell's theory. 4. Theoretical reasons for questioning the completeness of Maxwell's theory. 5. Pragmatic reasons for questioning the completeness of Maxwell's theory -- ch. 2. The Sagnac effect: a consequence of conservation of action due to gauge field global conformal invariance in a multiply joined topology of coherent fields. 1. Sagnac effect phenomenology. 2. The Lorentz group and the Lorenz gauge condition. 3. The phase factor concept. 4. Minkowski space-time versus Cartan-Weyl form -- ch. 3. Topological approaches to electromagnetism. 1. Solitons. 2. Instantons. 3. Polarization modulation over a set sampling interval. 4. The Aharonov-Bohm effect. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Electromagnetism. 
650 6 |a Électromagnétisme. 
650 7 |a electromagnetism.  |2 aat 
650 7 |a Electromagnetism  |2 fast 
758 |i has work:  |a Topological foundations of electromagnetism (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH4Gjr37xc7xvF8v3g9mtX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789812779960 
830 0 |a World Scientific series in contemporary chemical physics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679728  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 9529355 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679728 
994 |a 92  |b IZTAP