Cargando…

Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics.

This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Helffer, Bernard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2002.
Colección:Series on partial differential equations and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023828
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2002 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d I9W  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d STF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 868641285 
020 |a 9789812776891 
020 |a 9812776893 
020 |z 9812380981 
020 |z 9789812380982 
029 1 |a AU@  |b 000055973970 
029 1 |a DEBBG  |b BV044178972 
029 1 |a DEBSZ  |b 405245254 
035 |a (OCoLC)879023828  |z (OCoLC)868641285 
050 4 |a QC174.86.C6  |b H45 2002 
082 0 4 |a 530.13 
049 |a UAMI 
100 1 |a Helffer, Bernard. 
245 1 0 |a Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2002. 
300 |a 1 online resource (192 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on Partial Differential Equations and Applications 
588 0 |a Print version record. 
520 |a This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S. 
504 |a Includes bibliographical references (pages 169-176) and index. 
505 0 |a Ch. 1. Introduction. 1.1. Laplace integrals. 1.2. The problems in statistical mechanics. 1.3. Semi-classical analysis and transfer operators. 1.4. About the contents -- ch. 2. Witten Laplacians approach. 2.1. De Rham Complex. 2.2. Witten Complex. 2.3. Witten Laplacians. 2.4. Semi-classical considerations. 2.5. An alternative point of view: Dirichlet forms. 2.6. A nice formula for the covariance. 2.7. Notes -- ch. 3. Problems in statistical mechanics with discrete spins. 3.1. The Curie-Weiss model. 3.2. The 1-d Ising model. 3.3. The 2-d Ising model. 3.4. Notes -- ch. 4. Laplace integrals and transfer operators. 4.1. Introduction. 4.2. Classical Laplace method. 4.3. The method of transfer operators. 4.4. Elementary properties of operators with integral kernels. 4.5. Elementary properties of the transfer operator. 4.6. Operators with strictly positive kernel and application. 4.7. Thermodynamic limit. 4.8. Mean value. 4.9. Pair correlation. 4.10. 2-dimensional lattices. 4.11. Notes -- ch. 5. Semi-classical analysis for the transfer operators. 5.1. Introduction. 5.2. Explicit computations for the harmonic Kac operator. 5.3. Harmonic approximation for the transfer operator. 5.4. WKB constructions for the transfer operator. 5.5. The case of the Schrödinger operator in dimension 1. 5.6. Harmonic approximation for the transfer operator: upper bounds. 5.7. First conclusions about the splitting. 5.8. Some elements about the decay. 5.9. Splitting revisited. 5.10. Notes -- ch. 6. Basic facts in spectral theory and on the Schrödinger operator. 6.1. Introduction. 6.2. Selfadjoint operators, spectrum and spectral decomposition. 6.3. Discrete spectrum, essential spectrum. 6.4. Essentially selfadjoint operators. 6.5. Examples. 6.6. More on selfadjointness. 6.7. The max-min principle. 6.8. Compactness. 6.9. Notes -- ch. 7. Log-Sobolev inequalities. 7.1. Introduction. 7.2. Log-Sobolev inequalities in the strictly convex case. 7.3. Around Herbst's argument : necessary conditions for log-Sobolev inequalities. 7.4. Extension of the Bakry-Emery argument : convexity at infinity. 7.5. The case of the circle. 7.6. The case of the line. 7.7. General remarks. 7.8. Notes -- ch. 8. Uniform decay of correlations. 8.1. Introduction. 8.2. Lower bound for the spectrum of the Witten Laplacian. 8.3. Uniform estimates for a family of 1-dimensional Witten Laplacians. 8.4. A proof of the decay of correlations. 8.5. Generalized Brascamp-Lieb inequality. 8.6. Notes -- ch. 9. Uniform log-Sobolev inequalities. 9.1. Introduction and preliminaries. 9.2. Some log-Sobolev inequality for effective single spin phase. 9.3. The role of the decay estimates for log-Sobolev inequality. 9.4. Second part of the proof of the log-Sobolev inequality. 9.5. Conclusion. 9.6. Notes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Statistical mechanics. 
650 6 |a Mécanique statistique. 
650 7 |a Statistical mechanics  |2 fast 
758 |i has work:  |a Semiclassical analysis, Witten Laplacians, and statistical mechanics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPgjMrMxWbx8kWYFJRV83  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789812380982 
830 0 |a Series on partial differential equations and applications. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679588  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679588 
994 |a 92  |b IZTAP