Cargando…

Energy of Knots and Conformal Geometry.

Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a k...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Hara, Jun
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2003.
Colección:K & E series on knots and everything.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023794
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2003 si ob 001 0 eng d
010 |z  2003041104 
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d I9W  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 868641928  |a 1086442845  |a 1259165478 
020 |a 9789812795304 
020 |a 9812795308 
020 |z 9812383166 
020 |z 9789812383167 
020 |a 1281935719 
020 |a 9781281935717 
020 |a 9786611935719 
020 |a 6611935711 
029 1 |a AU@  |b 000055973961 
029 1 |a DEBBG  |b BV044178959 
029 1 |a DEBSZ  |b 405245181 
029 1 |a DEBSZ  |b 44558243X 
035 |a (OCoLC)879023794  |z (OCoLC)868641928  |z (OCoLC)1086442845  |z (OCoLC)1259165478 
050 4 |a QA612.2 .O36 2003 
082 0 4 |a 514.224 
049 |a UAMI 
100 1 |a O'Hara, Jun. 
245 1 0 |a Energy of Knots and Conformal Geometry. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2003. 
300 |a 1 online resource (306 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on Knots and Everything 
588 0 |a Print version record. 
520 |a Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problems in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting through numerical experiments. Contents: In Search of the "Optima. 
504 |a Includes bibliographical references and index. 
505 0 |a pt. 1. In search of the "optimal embedding" of a knot. ch. 1. Introduction. 1.1. Motivational problem. 1.2. Notations and remarks -- ch. 2. [symbol]-energy functional E([symbol]). 2.1. Renormalizations of electrostatic energy of charged knots. 2.2. Renormalizations of r[symbol] -modified electrostatic energy, E([symbol]). 2.3. Asymptotic behavior of r-[symbol] energy of polygonal knots. 2.4. The self-repulsiveness of E([symbol]) -- ch. 3. On E(2). 3.1. Continuity. 3.2 Behavior of E(2) under "pull-tight" -- 3.3. Möbius invariance. 3.4. The cosine formula for E(2). 3.5. Existence of E(2) minimizers. 3.6. Average crossing number and finiteness of knot types. 3.7. Gradient, regularity of E(2) minimizers, and criterion of criticality. 3.8. Unstable E(2)-critical torus knots. 3.9. Energy associated to a diagram. 3.10. Normal projection energies. 3.11. Generalization to higher dimensions -- ch. 4. L[symbol] norm energy with higher index. 4.1. Definition of ([symbol], p)-energy functional for knots e[symbol, p]. 4.2. Control of knots by E[symbol, p] (e[symbol, p]). 4.3. Complete system of admissible solid tori and finiteness of knot types. 4.4. Existence of E[symbol, p] minimizers. 4.5. The circles minimize E[symbol, p]. 4.6. Definition of [symbol]-energy polynomial for knots. 4.7. Brylinski's beta function for knots. 4.8. Other L[symbol]-norm energies -- ch. 5. Numerical experiments. 5.1. Numerical experiments on E(2). 5.2. [symbol]> 2 cases. The limit as n [symbol][symbol] when [symbol][symbol] 3. 5.3. Table of approximate minimum energies -- ch. 6. Stereo pictures of E(2) minimizers -- ch. 7. Energy of knots in a Riemannian manifold. 7.1. Definition of the unit density ([symbol], p)-energy E[symbol][symbol]. 7.2. Control of knots by E[symbol][symbol]. 7.3. Existence of energy minimizers. 7.4. Examples : energy of knots in S3 and H3. 7.5. Other definitions. 7.6. The existence of energy minimizers -- ch. 8. Physical knot energies. 8.1. Thickness and ropelength. 8.2. Four thirds law. 8.3. Osculating circles and osculating spheres. 8.4. Global radius of curvature. 8.5. Self distance type energies defined via the distance function. 8.6. Relation between these geometric quantities and e[symbol][symbol]. 8.7. Numerical computations and applications. 
505 8 |a pt. 2. Energy of knots from a conformal geometric viewpoint. ch. 9. Preparation from conformal geometry. 9.1. The Lorentzian metric on Minkowski space. 9.2. The Lorentzian exterior product. 9.3. The space of spheres. 9.4. The 4-tuple map and the cross ratio of 4 points. 9.5. Pencils of spheres. 9.6. Modulus of an annulus. 9.7. Cross-separating annuli and the modulus of four points. 9.8. The measure on the space of spheres A. 9.9. Orientations of 2-spheres -- ch. 10. The space of non-trivial spheres of a knot. 10.1. Non-trivial spheres of a knot. 10.2. The 4-tuple map for a knot. 10.3. Generalization of the 4-tuple map to the diagonal. 10.4. Lower semi-continuity of the radii of non-trivial spheres -- ch. 11. The infinitesimal cross ratio. 11.1. The infinitesimal cross ratio of the complex plane. 11.2. The real part as the canonical symplectic form of T*S2. 11.3. The infinitesimal cross ratio for a knot. 11.4. From the cosine formula to the original definition of E(2). 11.5.E[symbol]-energy for links -- ch. 12. The conformal sin energy E[symbol][symbol]. 12.1. The projection of the inverted open knot. 12.2. The geometric meaning of E[symbol][symbol]. 12.3. Self-repulsiveness of E[symbol][symbol]. 12.4. E[symbol][symbol] and the average crossing number. 12.5. E[symbol][symbol] for links -- ch. 13. Measure of non-trivial spheres. 13.1. Non-trivial spheres, tangent spheres and twice tangent spheres. 13.2. The volume of the set of the non-trivial spheres. 13.3. The measure of non-trivial spheres in terms of the infinitesimal cross ratio. 13.4. Non-trivial annuli and the modulus of a knot. 13.5. Self-repulsiveness of the measure of non-trivial spheres. 13.6. The measure of non-trivial spheres for non-trivial knots. 13.7. Measure of non-trivial spheres for links. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Conformal geometry. 
650 0 |a Knot theory. 
650 6 |a Géométrie conforme. 
650 6 |a Théorie des nœuds. 
650 7 |a Conformal geometry  |2 fast 
650 7 |a Knot theory  |2 fast 
758 |i has work:  |a Energy of knots and conformal geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVwjJWRmKQJGq7yG4wqcd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789812383167 
830 0 |a K & E series on knots and everything. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679573  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679573 
994 |a 92  |b IZTAP