Cargando…

Microscopic Approaches to Quantum Liquids in Confined Geometries.

Quantum liquids in confined geometries exhibit a large variety of new and interesting phenomena. For example, the internal structure of the liquid becomes more pronounced than in bulk liquids when the motion of the particles is restricted by an external matrix. Also, free quantum liquid droplets ena...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krotscheck, Eckhard
Otros Autores: Navarro, Jesus
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2002.
Colección:Series on advances in quantum many-body theory.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface ; Chapter 1 HELIUM LIQUIDS IN CONFINED GEOMETRIES ; 1. Introduction ; 2. General observations on confined and inhomogeneous liquid helium ; 3. Droplets ; 4. Films ; 5. Other systems of recent interest ; 6. Theories ; 7. Conclusions ; References.
  • Chapter 2 MONTE CARLO SIMULATIONS AT ZERO TEMPERATURE: HELIUM IN ONE, TWO, AND THREE DIMENSIONS1. Monte Carlo methods and condensed helium ; 2. Monte Carlo methods at zero temperature ; 2.1. Variational Monte Carlo ; 2.2. Diffusion Monte Carlo ; 3. Diffusion Monte Carlo in Fermi systems ; 3.1. Fixed node ; 3.2. Released node.
  • 3.3. Analytic improvement of the trial wave function 3.4. A combined strategy ; 4. Preliminary considerations for a DMC calculation of liquid 4He; 4.1. Inputs and consistency checks in the DMC calculations ; 4.2. Unbiased estimators ; 5. Bulk liquid 4He: ground-state and excitations; 5.1. Equation of state and other ground-state properties.
  • 5.2. Excited states: phonon-roton spectrum 6. Two-dimensional liquid 4He ; 6.1. Ground-state properties ; 6.2. Vortex excitation ; 7. One-dimensional liquid 4He; 8. Bulk liquid 3He ; 9. Two-dimensional 3He ; 10. Concluding remarks ; References.
  • Chapter 3 THE FINITE-TEMPERATURE PATH INTEGRAL MONTE CARLO METHOD AND ITS APPLICATION TO SUPERFLUID HELIUM CLUSTERS 1. Introduction ; 2. Theory ; 2.1. General formulation ; 2.2. Density matrix evaluation ; 2.3. Multilevel Metropolis algorithm.