Cargando…

Groups with Prescribed Quotient Groups and Associated Module Theory.

The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kurdachenko, L.
Otros Autores: Otal, J., Subbotin, I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2002.
Colección:Series in algebra.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023570
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2002 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d I9W  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 868641642 
020 |a 9789812778291 
020 |a 9812778292 
020 |z 9810247834 
020 |z 9789810247836 
029 1 |a AU@  |b 000055973913 
029 1 |a DEBBG  |b BV044178866 
029 1 |a DEBSZ  |b 405244754 
035 |a (OCoLC)879023570  |z (OCoLC)868641642 
050 4 |a QA174.2  |b .K87 2002 
082 0 4 |a 512.2 
049 |a UAMI 
100 1 |a Kurdachenko, L. 
245 1 0 |a Groups with Prescribed Quotient Groups and Associated Module Theory. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2002. 
300 |a 1 online resource (244 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in Algebra 
588 0 |a Print version record. 
520 |a The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural and promising. This theme has a history that is almost a half-century long. The authors of this book present well-established results as well as newer, contemporary achievements in this area from the common integral point of view. This view is based on the implementation of module theory for solving g. 
504 |a Includes bibliographical references (pages 203-219) and index. 
505 0 |a I. Simple modules. 1. On annihilators of modules. 2. The structure of simple modules over abelian groups. 3. The structure of simple modules over some generalization of abelian groups. 4. Complements of simple submodules -- II. Just infinite kodules. 5. Some results on modules over dedekind domains. 6. Just infinite modules over FC-hypercentral groups. 7. Just infinite modules over groups of finite 0-rank. 8. Just infinite modules over polycyclic-by-finite groups. 9. Co-layer-finite modules over dedekind domains -- III. Just non-x-groups. 10. The fitting subgroup of some just non-x-groups. 11. Just non-abelain groups. 12. Just non-hypercentral groups and just non-hypercentral modules. 13. Groups with many nilpotent factor-groups. 14. Groups with proper periodic factor-groups. 15. Just non-(polycyclic-by-finite) groups. 16. Just non-CC-groups and related classes. 17. Groups whose proper factor-groups have a transitive normality relation. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Group theory. 
650 0 |a Modules (Algebra) 
650 6 |a Théorie des groupes. 
650 6 |a Modules (Algèbre) 
650 7 |a Group theory  |2 fast 
650 7 |a Modules (Algebra)  |2 fast 
700 1 |a Otal, J. 
700 1 |a Subbotin, I. 
758 |i has work:  |a Groups with prescribed quotient groups and associated module theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYq9pmGQP9kvHtKwfkKv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810247836 
830 0 |a Series in algebra. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679462  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679462 
994 |a 92  |b IZTAP