Chargement en cours…

The Solution of the K(Gv) Problem.

The k(GV) conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product GV is bounded above by the order of V . Here V is a finite vector space and G a subgroup of GL(V) of order prime to that of V . It may be regarded as the special case of Brauer's...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Schmid, Peter
Format: Électronique eBook
Langue:Inglés
Publié: Singapore : World Scientific Publishing Company, 2007.
Collection:Imperial College Press advanced texts in mathematics.
Sujets:
Accès en ligne:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023533
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2007 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d STF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781860949715 
020 |a 1860949711 
020 |z 9781860949708  |q (hardcover ;  |q alk. paper) 
020 |z 1860949703  |q (hardcover ;  |q alk. paper) 
029 1 |a AU@  |b 000055973900 
029 1 |a DEBBG  |b BV044178789 
029 1 |a DEBSZ  |b 405244460 
035 |a (OCoLC)879023533 
050 4 |a QA353.K47  |b S36 2007 
082 0 4 |a 515.7223 
049 |a UAMI 
100 1 |a Schmid, Peter. 
245 1 4 |a The Solution of the K(Gv) Problem. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2007. 
300 |a 1 online resource (248 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Icp Advanced Texts in Mathematics 
588 0 |a Print version record. 
520 |a The k(GV) conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product GV is bounded above by the order of V . Here V is a finite vector space and G a subgroup of GL(V) of order prime to that of V . It may be regarded as the special case of Brauer's celebrated k(B) problem dealing with p -blocks B of p-solvable groups (p a prime). Whereas Brauer's problem is still open in its generality, the k(GV) problem has recently been solved, completing the work of a series of authors over a period of more than forty years. In this book the developments, ideas. 
504 |a Includes bibliographical references (pages 225-229) and index. 
505 0 |a Preface; 1. Conjugacy Classes, Characters, and Clifford Theory; 1.1 Class Functions and Characters; 1.2 Induced and Tensor-induced Modules; 1.3 Schur's Lemma; 1.4 Brauer's Permutation Lemma; 1.5 Algebraic Conjugacy; 1.6 Coprime Actions; 1.7 Invariant and Good Conjugacy Classes; 1.8 Nonstable Clifford Theory; 1.9 Stable Clifford Theory; 1.10 Good Conjugacy Classes and Extendible Characters; 2. Blocks of Characters and Brauer's k(B) Problem; 2.1 Modular Decomposition and Brauer Characters; 2.2 Cartan Invariants and Blocks; 2.3 Defect and Defect Groups; 2.4 The Brauer-Feit Theorem. 
505 8 |a 2.5 Higher Decomposition Numbers, Subsections2.6 Blocks of p-Solvable Groups; 2.7 Coprime FpX-Modules; 3. The k(GV) Problem; 3.1 Preliminaries; 3.2 Transitive Linear Groups; 3.3 Subsections and Point Stabilizers; 3.4 Abelian Point Stabilizers; 4. Symplectic and Orthogonal Modules; 4.1 Self-dual Modules; 4.2 Extraspecial Groups; 4.3 Holomorphs; 4.4 Good Conjugacy Classes Once Again; 4.5 Some Weil Characters; 4.6 Symplectic and Orthogonal Modules; 5. Real Vectors; 5.1 Regular, Abelian and Real Vectors; 5.2 The Robinson{Thompson Theorem; 5.3 Search for Real Vectors; 5.4 Clifford Reduction. 
505 8 |a 5.5 Reduced Pairs5.6 Counting Methods; 5.7 Two Examples; 6. Reduced Pairs of Extraspecial Type; 6.1 Nonreal Reduced Pairs; 6.2 Fixed Point Ratios; 6.3 Point Stabilizers of Exponent 2; 6.4 Characteristic 2; 6.5 Extraspecial 3-Groups; 6.6 Extraspecial 2-Groups of Small Order; 6.7 The Remaining Cases; 7. Reduced Pairs of Quasisimple Type; 7.1 Nonreal Reduced Pairs; 7.2 Regular Orbits; 7.3 Covering Numbers, Projective Marks; 7.4 Sporadic Groups; 7.5 Alternating Groups; 7.6 Linear Groups; 7.7 Symplectic Groups; 7.8 Unitary Groups; 7.9 Orthogonal Groups; 7.10 Exceptional Groups. 
505 8 |a 8. Modules without Real Vectors8.1 Some Fixed Point Ratios; 8.2 Tensor Induction of Reduced Pairs; 8.3 Tensor Products of Reduced Pairs; 8.4 The Riese-Schmid Theorem; 8.5 Nonreal Induced Pairs, Wreath Products; 9. Class Numbers of Permutation Groups; 9.1. The Partition Function; 9.2 Preparatory Results; 9.3 The Liebeck-Pyber Theorem; 9.4 Improvements; 10. The Final Stages of the Proof; 10.1 Class Numbers for Nonreal Reduced Pairs; 10.2 Counting Invariant Conjugacy Classes; 10.3 Nonreal Induced Pairs; 10.4 Characteristic 5; 10.5 Summary; 11. Possibilities for k(GV) = jV j; 11.1 Preliminaries. 
505 8 |a 11.2 Some Congruences11.3 Reduced Pairs; 12. Some Consequences for Block Theory; 12.1 Brauer Correspondence; 12.2 Clifford Theory of Blocks; 12.3 Blocks with Normal Defect Groups; 13. The Non-Coprime Situation; Appendix A: Cohomology of Finite Groups; Appendix B: Some Parabolic Subgroups; Appendix C: Weil Characters; Bibliography; List of Symbols; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Kernel functions. 
650 6 |a Noyaux (Mathématiques) 
650 7 |a Kernel functions  |2 fast 
776 0 8 |i Print version:  |z 9781860949708 
830 0 |a Imperial College Press advanced texts in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679367  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679367 
994 |a 92  |b IZTAP