Cargando…

Lectures on Chern-Weil Theory and Witten Deformations.

This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and Andr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhang, Weiping
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Colección:Nankai tracts in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879023527
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d I9W  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d STF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 868640528 
020 |a 9789812386588 
020 |a 9812386580 
020 |z 9810246854 
020 |z 9810246862  |q (pbk.) 
020 |z 9789810246853 
029 1 |a AU@  |b 000055973898 
029 1 |a DEBBG  |b BV044178818 
029 1 |a DEBSZ  |b 405244576 
035 |a (OCoLC)879023527  |z (OCoLC)868640528 
050 4 |a QA613.618 .Z43 2001 
082 0 4 |a 514.72  |a 516.36 
049 |a UAMI 
100 1 |a Zhang, Weiping. 
245 1 0 |a Lectures on Chern-Weil Theory and Witten Deformations. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (132 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nankai Tracts in Mathematics 
588 0 |a Print version record. 
520 |a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Contents: Chern-Weil. 
504 |a Includes bibliographical references and index. 
505 0 |a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Chern classes. 
650 0 |a Complexes. 
650 0 |a Index theorems. 
650 6 |a Classes de Chern. 
650 6 |a Complexes (Mathématiques) 
650 6 |a Théorèmes d'indices. 
650 7 |a Chern classes  |2 fast 
650 7 |a Complexes  |2 fast 
650 7 |a Index theorems  |2 fast 
776 0 8 |i Print version:  |z 9789810246853 
830 0 |a Nankai tracts in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679402  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679402 
994 |a 92  |b IZTAP