|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn879023527 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
140501s2001 si ob 001 0 eng d |
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d EBLCP
|d OCLCO
|d DEBSZ
|d OCLCQ
|d I9W
|d OCLCQ
|d ZCU
|d MERUC
|d U3W
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d STF
|d ICG
|d INT
|d AU@
|d OCLCQ
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 868640528
|
020 |
|
|
|a 9789812386588
|
020 |
|
|
|a 9812386580
|
020 |
|
|
|z 9810246854
|
020 |
|
|
|z 9810246862
|q (pbk.)
|
020 |
|
|
|z 9789810246853
|
029 |
1 |
|
|a AU@
|b 000055973898
|
029 |
1 |
|
|a DEBBG
|b BV044178818
|
029 |
1 |
|
|a DEBSZ
|b 405244576
|
035 |
|
|
|a (OCoLC)879023527
|z (OCoLC)868640528
|
050 |
|
4 |
|a QA613.618 .Z43 2001
|
082 |
0 |
4 |
|a 514.72
|a 516.36
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zhang, Weiping.
|
245 |
1 |
0 |
|a Lectures on Chern-Weil Theory and Witten Deformations.
|
260 |
|
|
|a Singapore :
|b World Scientific Publishing Company,
|c 2001.
|
300 |
|
|
|a 1 online resource (132 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Nankai Tracts in Mathematics
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Contents: Chern-Weil.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Chern classes.
|
650 |
|
0 |
|a Complexes.
|
650 |
|
0 |
|a Index theorems.
|
650 |
|
6 |
|a Classes de Chern.
|
650 |
|
6 |
|a Complexes (Mathématiques)
|
650 |
|
6 |
|a Théorèmes d'indices.
|
650 |
|
7 |
|a Chern classes
|2 fast
|
650 |
|
7 |
|a Complexes
|2 fast
|
650 |
|
7 |
|a Index theorems
|2 fast
|
776 |
0 |
8 |
|i Print version:
|z 9789810246853
|
830 |
|
0 |
|a Nankai tracts in mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679402
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1679402
|
994 |
|
|
|a 92
|b IZTAP
|