Cargando…

Genetic Fuzzy Systems : Evolutionary Tuning and Learning of Fuzzy Knowledge Bases.

In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzz...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Herrera, Francisco
Otros Autores: Hoffmann, Frank, Magdalena, Luis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Colección:Advances in Fuzzy Systems-Applications and Theory.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn879023390
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d HS0  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9789812810731 
020 |a 9812810730 
029 1 |a DEBBG  |b BV044178746 
035 |a (OCoLC)879023390 
050 4 |a QH438.4.M3  |b G46 2001 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Herrera, Francisco. 
245 1 0 |a Genetic Fuzzy Systems :  |b Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (489 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in Fuzzy Systems-Applications and Theory 
588 0 |a Print version record. 
520 |a In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces t. 
505 0 |a Foreword; Preface; Contents; Chapter 1 Fuzzy Rule-Based Systems; 1.1 Framework: Fuzzy Logic and Fuzzy Systems; 1.2 Mamdani Fuzzy Rule-Based Systems; 1.3 Takagi-Sugeno-Kang Fuzzy Rule-Based Systems; 1.4 Generation of the Fuzzy Rule Set; 1.5 Applying Fuzzy Rule-Based Systems; Chapter 2 Evolutionary Computation; 2.1 Conceptual Foundations of Evolutionary Computation; 2.2 Genetic Algorithms; 2.3 Other Evolutionary Algorithms; Chapter 3 Introduction to Genetic Fuzzy Systems; 3.1 Soft Computing; 3.2 Hybridisation in Soft Computing; 3.3 Integration of Evolutionary Algorithms and Fuzzy Logic 
505 8 |a 3.4 Genetic Fuzzy SystemsChapter 4 Genetic Tuning Processes; 4.1 Tuning of Fuzzy Rule-Based Systems; 4.2 Genetic Tuning of Scaling Functions; 4.3 Genetic Tuning of Membership Functions of Mamdani Fuzzy Rule-Based Systems; 4.4 Genetic Tuning of TSK Fuzzy Rule Sets; Chapter 5 Learning with Genetic Algorithms; 5.1 Genetic Learning Processes. Introduction; 5.2 The Michigan Approach. Classifier Systems; 5.3 The Pittsburgh Approach; 5.4 The Iterative Rule Learning Approach; Chapter 6 Genetic Fuzzy Rule-Based Systems Based on the Michigan Approach; 6.1 Basic Features of Fuzzy Classifier Systems 
505 8 |a 6.2 Fuzzy Classifier Systems for Learning Rule Bases6.3 Fuzzy Classifier Systems for Learning Fuzzy Rule Bases; Chapter 7 Genetic Fuzzy Rule-Based Systems Based on the Pittsburgh Approach; 7.1 Coding Rule Bases as Chromosomes; 7.2 Multi-chromosome Genomes (Coding Knowledge Bases); 7.3 Examples; Chapter 8 Genetic Fuzzy Rule-Based Systems Based on the Iterative Rule Learning Approach; 8.1 Coding the Fuzzy Rules; 8.2 Learning Fuzzy Rules under Competition; 8.3 Post-Processing: Refining Rule Bases under Cooperation; 8.4 Inducing Cooperation in the Fuzzy Rule Generation Stage; 8.5 Examples 
505 8 |a Chapter 9 Other Genetic Fuzzy Rule-Based System Paradigms9.1 Designing Fuzzy Rule-Based Systems with Genetic Progamming; 9.2 Genetic Selection of Fuzzy Rule Sets; 9.3 Learning the Knowledge Base via the Genetic Derivation of the Data Base; 9.4 Other Genetic-Based Machine Learning Approaches; Chapter 10 Other Kinds of Evolutionary Fuzzy Systems; 10.1 Genetic Fuzzy Neural Networks; 10.2 Genetic Fuzzy Clustering; 10.3 Genetic Fuzzy Decision Trees; Chapter 11 Applications; 11.1 Classification; 11.2 System Modelling; 11.3 Control Systems; 11.4 Robotics; Bibliography; Acronyms; Index 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fuzzy systems. 
650 0 |a Genetics  |x Mathematical models. 
650 6 |a Systèmes flous. 
650 7 |a Fuzzy systems  |2 fast 
650 7 |a Genetics  |x Mathematical models  |2 fast 
700 1 |a Hoffmann, Frank. 
700 1 |a Magdalena, Luis. 
758 |i has work:  |a Genetic fuzzy systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGF94VB8PR7X77BWvRVPkP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810240165 
830 0 |a Advances in Fuzzy Systems-Applications and Theory. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679316  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685571 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679316 
994 |a 92  |b IZTAP