Cargando…

Basic data analysis for time series with R /

"This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Derryberry, DeWayne R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn877564736
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 140417s2014 nju ob 001 0 eng
010 |a  2014007300 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d EBLCP  |d CUS  |d YDXCP  |d N$T  |d IDEBK  |d DEBSZ  |d DG1  |d OCLCF  |d CDX  |d RECBK  |d COO  |d B24X7  |d S4S  |d E7B  |d UMI  |d DEBBG  |d OCLCQ  |d OCLCO  |d COD  |d OCLCQ  |d OCLCO  |d COCUF  |d DG1  |d OCLCQ  |d Z5A  |d LIP  |d PIFBY  |d ZCU  |d LIV  |d MERUC  |d OCLCQ  |d U3W  |d MERER  |d OCLCQ  |d UUM  |d STF  |d CEF  |d CRU  |d VTS  |d ICG  |d OCLCQ  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d ERF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d BRF  |d UKBTH  |d VT2  |d ELBRO  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO 
019 |a 891384241  |a 904769495  |a 910990965  |a 961577388  |a 962610919  |a 1053507388  |a 1148089574  |a 1159605917 
020 |a 9781118593370  |q (pdf) 
020 |a 1118593375  |q (pdf) 
020 |a 9781118593363  |q (epub) 
020 |a 1118593367  |q (epub) 
020 |a 9781118593233 
020 |a 1118593235 
020 |a 1118422546  |q (hardback) 
020 |a 9781118422540  |q (hardback) 
020 |a 9781322007595  |q (MyiLibrary) 
020 |a 1322007594  |q (MyiLibrary) 
020 |z 9781118422540  |q (hardback) 
024 8 |a 9781118593363 
029 1 |a AU@  |b 000066260806 
029 1 |a CHBIS  |b 010442103 
029 1 |a CHNEW  |b 000696704 
029 1 |a CHNEW  |b 000696705 
029 1 |a CHNEW  |b 000888009 
029 1 |a CHNEW  |b 000943018 
029 1 |a CHVBK  |b 480254222 
029 1 |a DEBBG  |b BV042682794 
029 1 |a DEBBG  |b BV043396696 
029 1 |a DEBBG  |b BV044069035 
029 1 |a DEBSZ  |b 409837857 
029 1 |a DEBSZ  |b 425888452 
029 1 |a DEBSZ  |b 431710643 
029 1 |a DEBSZ  |b 446579955 
029 1 |a DEBSZ  |b 449434966 
029 1 |a DEBSZ  |b 485047594 
029 1 |a NZ1  |b 15753448 
029 1 |a NZ1  |b 15906976 
029 1 |a NZ1  |b 15952792 
035 |a (OCoLC)877564736  |z (OCoLC)891384241  |z (OCoLC)904769495  |z (OCoLC)910990965  |z (OCoLC)961577388  |z (OCoLC)962610919  |z (OCoLC)1053507388  |z (OCoLC)1148089574  |z (OCoLC)1159605917 
037 |a CL0500000567  |b Safari Books Online 
042 |a pcc 
050 0 0 |a QA280 
072 7 |a REF  |x 018000  |2 bisacsh 
082 0 0 |a 001.4/2202855133  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Derryberry, DeWayne R.,  |e author. 
245 1 0 |a Basic data analysis for time series with R /  |c DeWayne R. Derryberry, Department of Mathematics and Statistics, Idaho State University, Voise, ID. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons, Inc.,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
504 |a Includes bibliographical references and index. 
520 |a "This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book. The content includes modern topics such as wavelets, Fourier series, and Akaike's Information Criterion (AIC), which is not typical of current-day "classics." Applications to a variety of scientific fields are showcased. Exercise sets are well crafted with the express intent of supporting pedagogy through recognition and repetition. R subroutines are employed as the software and graphics tool of choice. Brevity is a key component to the retention of the subject matter. The book presumes knowledge of linear algebra, probability, data analysis, and basic computer programming"--  |c Provided by publisher 
520 |a "This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book"--  |c Provided by publisher 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 0 |g Machine generated contents note:  |g 1.  |t R Basics --  |g 1.1.  |t Getting Started, --  |g 1.2.  |t Special R Conventions, --  |g 1.3.  |t Common Structures, --  |g 1.4.  |t Common Functions, --  |g 1.5.  |t Time Series Functions, --  |g 1.6.  |t Importing Data, --  |t Exercises, --  |g 2.  |t Review of Regression and More About R --  |g 2.1.  |t Goals of this Chapter, --  |g 2.2.  |t The Simple(ST) Regression Model, --  |g 2.2.1.  |t Ordinary Least Squares, --  |g 2.2.2.  |t Properties of OLS Estimates, --  |g 2.2.3.  |t Matrix Representation of the Problem, --  |g 2.3.  |t Simulating the Data from a Model and Estimating the Model Parameters in R, --  |g 2.3.1.  |t Simulating Data, --  |g 2.3.2.  |t Estimating the Model Parameters in R, --  |g 2.4.  |t Basic Inference for the Model, --  |g 2.5.  |t Residuals Analysis[2014]What Can Go Wrong, --  |g 2.6.  |t Matrix Manipulation in R, --  |g 2.6.1.  |t Introduction, --  |g 2.6.2.  |t OLS the Hard Way, --  |g 2.6.3.  |t Some Other Matrix Commands, --  |t Exercises, --  |g 3.  |t The Modeling Approach Taken in this Book and Some Examples of Typical Serially Correlated Data --  |g 3.1.  |t Signal and Noise, --  |g 3.2.  |t Time Series Data, --  |g 3.3.  |t Simple Regression in the Framework, --  |g 3.4.  |t Real Data and Simulated Data, --  |g 3.5.  |t The Diversity of Time Series Data, --  |g 3.6.  |t Getting Data Into R, --  |g 3.6.1.  |t Overview, --  |g 3.6.2.  |t The Diskette and the scan() and ts() Functions[2014]New York City Temperatures, --  |g 3.6.3.  |t The Diskette and the read.table() Function[2014]The Semmelweis Data, --  |g 3.6.4.  |t Cut and Paste Data to a Text Editor, --  |t Exercises, --  |g 4.  |t Some Comments on Assumptions --  |g 4.1.  |t Introduction, --  |g 4.2.  |t The Normality Assumption, --  |g 4.2.1.  |t Right Skew, --  |g 4.2.2.  |t Left Skew, --  |g 4.2.3.  |t Heavy Tails, --  |g 4.3.  |t Equal Variance, --  |g 4.3.1.  |t Two-Sample t-Test, --  |g 4.3.2.  |t Regression, --  |g 4.4.  |t Independence, --  |g 4.5.  |t Power of Logarithmic Transformations Illustrated, --  |g 4.6.  |t Summary, --  |t Exercises, --  |g 5.  |t The Autocorrelation Function And AR(1), AR(2) Models --  |g 5.1.  |t Standard Models[2014]What are the Alternatives to White Noise?, --  |g 5.2.  |t Autocovariance and Autocorrelation, --  |g 5.2.1.  |t Stationarity, --  |g 5.2.2.  |t A Note About Conditions, --  |g 5.2.3.  |t Properties of Autocovariance, --  |g 5.2.4.  |t White Noise, --  |g 5.2.5.  |t Estimation of the Autocovariance and Autocorrelation, --  |g 5.3.  |t The acf() Function in R, --  |g 5.3.1.  |t Background, --  |g 5.3.2.  |t The Basic Code for Estimating the Autocovariance, --  |g 5.4.  |t The First Alternative to White Noise: Autoregressive Errors[2014]AR(1), AR(2), --  |g 5.4.1.  |t Definition of the AR(1) and AR(2) Models, --  |g 5.4.2.  |t Some Preliminary Facts, --  |g 5.4.3.  |t The AR(1) Model Autocorrelation and Autocovariance, --  |g 5.4.4.  |t Using Correlation and Scatterplots to Illustrate the AR(1) Model, --  |g 5.4.5.  |t The AR(2) Model Autocorrelation and Autocovariance, --  |g 5.4.6.  |t Simulating Data for AR(m) Models, --  |g 5.4.7.  |t Examples of Stable and Unstable AR(1) Models, --  |g 5.4.8.  |t Examples of Stable and Unstable AR(2) Models, --  |t Exercises, --  |g 6.  |t The Moving Average Models MA(1) And MA(2) --  |g 6.1.  |t The Moving Average Model, --  |g 6.2.  |t The Autocorrelation for MA(1) Models, --  |g 6.3.  |t A Duality Between MA(l) And AR(m) Models, --  |g 6.4.  |t The Autocorrelation for MA(2) Models, --  |g 6.5.  |t Simulated Examples of the MA(1) Model, --  |g 6.6.  |t Simulated Examples of the MA(2) Model, --  |g 6.7.  |t AR(m) and MA(l) model acf() Plots, --  |t Exercises, --  |g 7.  |t Review of Transcendental Functions and Complex Numbers --  |g 7.1.  |t Background, --  |g 7.2.  |t Complex Arithmetic, --  |g 7.2.1.  |t The Number i, --  |g 7.2.2.  |t Complex Conjugates, --  |g 7.2.3.  |t The Magnitude of a Complex Number, --  |g 7.3.  |t Some Important Series, --  |g 7.3.1.  |t The Geometric and Some Transcendental Series, --  |g 7.3.2.  |t A Rationale for Euler's Formula, --  |g 7.4.  |t Useful Facts About Periodic Transcendental Functions, --  |t Exercises, --  |g 8.  |t The Power Spectrum and the Periodogram --  |g 8.1.  |t Introduction, --  |g 8.2.  |t A Definition and a Simplified Form for p(f), --  |g 8.3.  |t Inverting p(f) to Recover the Ck Values, --  |g 8.4.  |t The Power Spectrum for Some Familiar Models, --  |g 8.4.1.  |t White Noise, --  |g 8.4.2.  |t The Spectrum for AR(1) Models, --  |g 8.4.3.  |t The Spectrum for AR(2) Models, --  |g 8.5.  |t The Periodogram, a Closer Look, --  |g 8:5.1.  |t Why is the Periodogram Useful?, --  |g 8.5.2.  |t Some Naive Code for a Periodogram, --  |g 8.5.3.  |t An Example[2014]The Sunspot Data, --  |g 8.6.  |t The Function spec.pgram() in R, --  |t Exercises, --  |g 9.  |t Smoothers, The Bias-Variance Tradeoff, and the Smoothed Periodogram --  |g 9.1.  |t Why is Smoothing Required?, --  |g 9.2.  |t Smoothing, Bias, and Variance, --  |g 9.3.  |t Smoothers Used in R, --  |g 9.3.1.  |t The R Function lowess(), --  |g 9.3.2.  |t The R Function smooth.spline(), --  |g 9.3.3.  |t Kernel Smoothers in spec.pgram(), --  |g 9.4.  |t Smoothing the Periodogram for a Series With a Known and Unknown Period, --  |g 9.4.1.  |t Period Known, --  |g 9.4.2.  |t Period Unknown, --  |g 9.5.  |t Summary, --  |t Exercises, --  |g 10.  |t A Regression Model for Periodic Data --  |g 10.1.  |t The Model, 
505 0 0 |g 10.2.  |t An Example: The NYC Temperature Data, --  |g 10.2.1.  |t Fitting a Periodic Function, --  |g 10.2.2.  |t An Outlier, --  |g 10.2.3.  |t Refitting the Model with the Outlier Corrected, --  |g 10.3.  |t Complications 1: CO2 Data, --  |g 10.4.  |t Complications 2: Sunspot Numbers, --  |g 10.5.  |t Complications 3: Accidental Deaths, --  |g 10.6.  |t Summary, --  |t Exercises, --  |g 11.  |t Model Selection and Cross-Validation --  |g 11.1.  |t Background, --  |g 11.2.  |t Hypothesis Tests in Simple Regression, --  |g 11.3.  |t A More General Setting for Likelihood Ratio Tests, --  |g 11.4.  |t A Subtlety Different Situation, --  |g 11.5.  |t Information Criteria, --  |g 11.6.  |t Cross-validation (Data Splitting): NYC Temperatures, --  |g 11.6.1.  |t Explained Variation, R2, --  |g 11.6.2.  |t Data Splitting, --  |g 11.6.3.  |t Leave-One-Out Cross-Validation, --  |g 11.6.4.  |t AIC as Leave-One-Out Cross-Validation, --  |g 11.7.  |t Summary, --  |t Exercises, --  |g 12.  |t Fitting Fourier series --  |g 12.1.  |t Introduction: More Complex Periodic Models, --  |g 12.2.  |t More Complex Periodic Behavior: Accidental Deaths, --  |g 12.2.1.  |t Fourier Series Structure, --  |g 12.2.2.  |t R Code for Fitting Large Fourier Series, --  |g 12.2.3.  |t Model Selection with AIC, --  |g 12.2.4.  |t Model Selection with Likelihood Ratio Tests, --  |g 12.2.5.  |t Data Splitting, --  |g 12.2.6.  |t Accidental Deaths[2014]Some Comment on Periodic Data, --  |g 12.3.  |t The Boise River Flow data, --  |g 12.3.1.  |t The Data, --  |g 12.3.2.  |t Model Selection with AIC, --  |g 12.3.3.  |t Data Splitting, --  |g 12.3.4.  |t The Residuals, --  |g 12.4.  |t Where Do We Go from Here?, --  |t Exercises, --  |g 13.  |t Adjusting for AR(1) Correlation in Complex Models --  |g 13.1.  |t Introduction, --  |g 13.2.  |t The Two-Sample t-Test[2014]UNCUT and Patch-Cut Forest, --  |g 13.2.1.  |t The Sleuth Data and the Question of Interest, --  |g 13.2.2.  |t A Simple Adjustment for t-Tests When the Residuals Are AR(1), --  |g 13.2.3.  |t A Simulation Example, --  |g 13.2.4.  |t Analysis of the Sleuth Data, --  |g 13.3.  |t The Second Sleuth Case[2014]Global Warming, A Simple Regression, --  |g 13.3.1.  |t The Data and the Question, --  |g 13.3.2.  |t Filtering to Produce (Quasi- )Independent Observations, --  |g 13.3.3.  |t Simulated Example[2014]Regression, --  |g 13.3.4.  |t Analysis of the Regression Case, --  |g 13.3.5.  |t The Filtering Approach for the Logging Case, --  |g 13.3.6.  |t A Few Comments on Filtering, --  |g 13.4.  |t The Semmelweis Intervention, --  |g 13.4.1.  |t The Data, --  |g 13.4.2.  |t Why Serial Correlation?, --  |g 13.4.3.  |t How This Data Differs from the Patch/Uncut Case, --  |g 13.4.4.  |t Filtered Analysis, --  |g 13.4.5.  |t Transformations and Inference, --  |g 13.5.  |t The NYC Temperatures (Adjusted), --  |g 13.5.1.  |t The Data and Prediction Intervals, --  |g 13.5.2.  |t The AR(1) Prediction Model, --  |g 13.5.3.  |t A Simulation to Evaluate These Formulas, --  |g 13.5.4.  |t Application to NYC Data, --  |g 13.6.  |t The Boise River Flow Data: Model Selection With Filtering, --  |g 13.6.1.  |t The Revised Model Selection Problem, --  |g 13.6.2.  |t Comments on R2 and R2pred' --  |g 13.6.3.  |t Model Selection After Filtering with a Matrix, --  |g 13.7.  |t Implications of AR(1) Adjustments and the "Skip" Method, --  |g 13.7.1.  |t Adjustments for AR(1) Autocorrelation, --  |g 13.7.2.  |t Impact of Serial Correlation on p-Values, --  |g 13.7.3.  |t The "skip" Method, --  |g 13.8.  |t Summary, --  |t Exercises, --  |g 14.  |t The Backshift Operator, the Impulse Response Function, and General ARMA Models --  |g 14.1.  |t The General ARMA Model, --  |g 14.1.1.  |t The Mathematical Formulation, --  |g 14.1.2.  |t The arima.sim() Function in R Revisited, --  |g 14.1.3.  |t Examples of ARMA(m, l) Models, --  |g 14.2.  |t The Backshift (Shift, Lag) Operator, --  |g 14.2.1.  |t Definition of B, --  |g 14.2.2.  |t The Stationary Conditions for a General AR(m) Model, --  |g 14.2.3.  |t ARMA(m, l) Models and the Backshift Operator, --  |g 14.2.4.  |t More Examples of ARMA(m, l) Models, --  |g 14.3.  |t The Impulse Response Operator[2014]Intuition, --  |g 14.4.  |t Impulse Response Operator, g(B)[2014]Computation, --  |g 14.4.1.  |t Definition of g(B), --  |g 14.4.2.  |t Computing the Coefficients, --  |g 14.4.3.  |t Plotting an Impulse Response Function, --  |g 14.5.  |t Interpretation and Utility of the Impulse Response Function, --  |t Exercises, --  |g 15.  |t The Yule[2014]Walker Equations and the Partial Autocorrelation Function --  |g 15.1.  |t Background, --  |g 15.2.  |t Autocovariance of an ARMA(m, /) Model, --  |g 15.2.1.  |t A Preliminary Result, --  |g 15.2.2.  |t The Autocovariance Function for ARMA(m, /) Models, --  |g 15.3.  |t AR(m) and the Yule[2014]Walker Equations, --  |g 15.3.1.  |t The Equations, --  |g 15.3.2.  |t The R Function aryw() with an AR(3) Example, --  |g 15.3.3.  |t Information Criteria-Based Model Selection Using aryw(), --  |g 15.4.  |t The Partial Autocorrelation Plot, --  |g 15.4.1.  |t A Sequence of Hypothesis Tests, --  |g 15.4.2.  |t The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --  |g 15.5.  |t The Spectrum For Arma Processes, --  |g 15.6.  |t Summary, --  |t Exercises, --  |g 16.  |t Modeling Philosophy and Complete Examples --  |g 16.1.  |t Modeling Overview, --  |g 16.1.1.  |t The Algorithm, 
505 0 0 |g Note continued:  |g 16.1.2.  |t The Underlying Assumption, --  |g 16.1.3.  |t An Example Using an AR(m) Filter to Model MA(3), --  |g 16.1.4.  |t Generalizing the "Skip" Method, --  |g 16.2.  |t A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --  |g 16.2.1.  |t The Data, --  |g 16.2.2.  |t A Saturated Model, --  |g 16.2.3.  |t Building an AR(m) Filtering Matrix, --  |g 16.2.4.  |t Model Selection, --  |g 16.2.5.  |t Predictions and Prediction Intervals for an AR(3) Model, --  |g 16.2.6.  |t Data Splitting, --  |g 16.2.7.  |t Model Selection Based on a Validation Set, --  |g 16.3.  |t A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --  |g 16.3.1.  |t The Saturated Model and Filter, --  |g 16.3.2.  |t Model Selection, --  |g 16.3.3.  |t How Well Does the Model Fit the Data?, --  |g 16.4.  |t Modeling Periodicity with a Possible Intervention[2014]Two Examples, --  |g 16.4.1.  |t The General Structure, --  |g 16.4.2.  |t Directory Assistance, --  |g 16.4.3.  |t Ozone Levels in Los Angeles, --  |g 14.5.  |t Interpretation and Utility of the Impulse Response Function, --  |t Exercises, --  |g 15.  |t The Yule[2014]Walker Equations and the Partial Autocorrelation Function --  |g 15.1.  |t Background, --  |g 15.2.  |t Autocovariance of an ARMA(m, l) Model, --  |g 15.2.1.  |t A Preliminary Result, --  |g 15.2.2.  |t The Autocovariance Function for ARMA(m, /) Models, --  |g 15.3.  |t AR(m) and the Yule[2014]Walker Equations, --  |g 15.3.1.  |t The Equations, --  |g 15.3.2.  |t The R Function ar.yw() with an AR(3) Example, --  |g 15.3.3.  |t Information Criteria-Based Model Selection Using ar.yw(), --  |g 15.4.  |t The Partial Autocorrelation Plot, --  |g 15.4.1.  |t A Sequence of Hypothesis Tests, --  |g 15.4.2.  |t The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --  |g 15.5.  |t The Spectrum For Arma Processes, --  |g 15.6.  |t Summary, --  |t Exercises, --  |g 16.  |t Modeling Philosophy and Complete Examples --  |g 16.1.  |t Modeling Overview, --  |g 16.1.1.  |t The Algorithm, --  |g 16.1.2.  |t The Underlying Assumption, --  |g 16.1.3.  |t An Example Using an AR(m) Filter to Model MA(3), --  |g 16.1.4.  |t Generalizing the "Skip" Method, --  |g 16.2.  |t A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --  |g 16.2.1.  |t The Data, --  |g 16.2.2.  |t A Saturated Model, --  |g 16.2.3.  |t Building an AR(m) Filtering Matrix, --  |g 16.2.4.  |t Model Selection, --  |g 16.2.5.  |t Predictions and Prediction Intervals for an AR(3) Model, --  |g 16.2.6.  |t Data Splitting, --  |g 16.2.7.  |t Model Selection Based on a Validation Set, --  |g 16.3.  |t A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --  |g 16.3.1.  |t The Saturated Model and Filter, --  |g 16.3.2.  |t Model Selection, --  |g 16.3.3.  |t How Well Does the Model Fit the Data?, --  |g 16.4.  |t Modeling Periodicity with a Possible Intervention[2014]Two Examples, --  |g 16.4.1.  |t The General Structure, --  |g 16.4.2.  |t Directory Assistance, --  |g 16.4.3.  |t Ozone Levels in Los Angeles, --  |g 16.5.  |t Periodic Models: Monthly, Weekly, and Daily Averages, --  |g 16.6.  |t Summary, --  |t Exercises, --  |g 17.  |t Wolf's Sunspot Number Data --  |g 17.1.  |t Background, --  |g 17.2.  |t Unknown Period -> Nonlinear Model, --  |g 17.3.  |t The Function nls() in R, --  |g 17.4.  |t Determining the Period, --  |g 17.5.  |t Instability in the Mean, Amplitude, and Period, --  |g 17.6.  |t Data Splitting for Prediction, --  |g 17.6.1.  |t The Approach, --  |g 17.6.2.  |t Step 1-Fitting One Step Ahead, --  |g 17.6.3.  |t The AR Correction, --  |g 17.6.4.  |t Putting it All Together, --  |g 17.6.5.  |t Model Selection, --  |g 17.6.6.  |t Predictions Two Steps Ahead, --  |g 17.7.  |t Summary, --  |t Exercises, --  |g 18.  |t An Analysis of Some Prostate and Breast Cancer Data --  |g 18.1.  |t Background, --  |g 18.2.  |t The First Data Set, --  |g 18.3.  |t The Second Data Set, --  |g 18.3.1.  |t Background and Questions, --  |g 18.3.2.  |t Outline of the Statistical Analysis, --  |g 18.3.3.  |t Looking at the Data, --  |g 18.3.4.  |t Examining the Residuals for AR(m) Structure, --  |g 18.3.5.  |t Regression Analysis with Filtered Data, --  |t Exercises, --  |g 19.  |t Christopher Tennant/Ben Crosby Watershed Data --  |g 19.1.  |t Background and Question, --  |g 19.2.  |t Looking at the Data and Fitting Fourier Series, --  |g 19.2.1.  |t The Structure of the Data, --  |g 19.2.2.  |t Fourier Series Fits to the Data, --  |g 19.2.3.  |t Connecting Patterns in Data to Physical Processes, --  |g 19.3.  |t Averaging Data, --  |g 19.4.  |t Results, --  |t Exercises, --  |g 20.  |t Vostok Ice Core Data --  |g 20.1.  |t Source of the Data, --  |g 20.2.  |t Background, --  |g 20.3.  |t Alignment, --  |g 20.3.1.  |t Need for Alignment, and Possible Issues Resulting from Alignment, --  |g 20.3.2.  |t Is the Pattern in the Temperature Data Maintained?, --  |g 20.3.3.  |t Are the Dates Closely Matched?, --  |g 20.3.4.  |t Are the Times Equally Spaced?, --  |g 20.4.  |t A Naïve Analysis, --  |g 20.4.1.  |t A Saturated Model, --  |g 20.4.2.  |t Model Selection, --  |g 20.4.3.  |t The Association Between CO2 and Temperature Change, --  |g 20.5.  |t A Related Simulation, --  |g 20.5.1.  |t The Model and the Question of Interest, --  |g 20.5.2.  |t Simulation Code in R, --  |g 20.5.3.  |t A Model Using all of the Simulated Data, --  |g 20.5.4.  |t A Model Using a Sample of 283 from the Simulated Data, --  |g 20.6.  |t An AR(1) Model for Irregular Spacing, --  |g 20.6.1.  |t Motivation, --  |g 20.6.2.  |t Method, --  |g 20.6.3.  |t Results, --  |g 20.6.4.  |t Sensitivity Analysis, --  |g 20.6.5.  |t A Final Analysis, Well Not Quite, --  |g 20.7.  |t Summary, --  |t Exercises, --  |g A.1.  |t Overview, --  |g A.2.  |t Loading a Time Series in Datamarket, --  |g A.3.  |t Respecting Datamarket Licensing Agreements, --  |g B.1.  |t Introduction, --  |g B.2.  |t PRESS, --  |g B.3.  |t Connection to Akaike's Result, --  |g B.4.  |t Normalization and R2, --  |g B.5.  |t An example, --  |g B.6.  |t Conclusion and Further Comments, --  |g C.1.  |t Introduction, --  |g C.2.  |t Newton's Method for One-Dimensional Nonlinear Optimization, --  |g C.3.  |t A Sequence of Directions, Step Sizes, and a Stopping Rule, --  |g C.4.  |t What Could Go Wrong?, --  |g C.5.  |t Generalizing the Optimization Problem, --  |g C.6.  |t What Could Go Wrong[2014]Revisited, --  |g C.7.  |t What Can be Done? 
542 |f Copyright © John Wiley & Sons 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a R (Computer program language) 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a R (Langage de programmation) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
650 7 |a Anàlisi de sèries temporals.  |2 thub 
650 7 |a Processament de dades.  |2 thub 
650 7 |a R (Llenguatge de programació)  |2 thub 
655 7 |a Llibres electrònics.  |2 thub 
776 0 8 |i Print version:  |a Derryberry, DeWayne R.  |t Basic data analysis for time series with R.  |d Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]  |z 9781118422540  |w (DLC) 2014007300 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118593363/?ar  |z Texto completo 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1719581  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26860136 
938 |a Books 24x7  |b B247  |n bks00063461 
938 |a Coutts Information Services  |b COUT  |n 28705837 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1719581 
938 |a ebrary  |b EBRY  |n ebr10899801 
938 |a EBSCOhost  |b EBSC  |n 817454 
938 |a eLibro  |b ELBO  |n ELB178735 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28705837 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00582635 
938 |a YBP Library Services  |b YANK  |n 12010999 
938 |a YBP Library Services  |b YANK  |n 11072113 
938 |a YBP Library Services  |b YANK  |n 11949762 
994 |a 92  |b IZTAP