Cargando…

Fractional calculus with applications in mechanics : wave propagation, impact and variational principles /

The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Atanacković, Teodor M., Challamel, Noël
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; Hoboken, New Jersey : ISTE : Wiley, 2014.
Colección:Focus series in mechanical engineering and solid mechanics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Contents; Preface; PART 1. MATHEMATICAL PRELIMINARIES, DEFINITIONS AND PROPERTIES OF FRACTIONAL INTEGRALS AND DERIVATIVES; Chapter 1. Mathematical Preliminaries; 1.1. Notation and definitions; 1.2. Laplace transform of a function; 1.3. Spaces of distributions; 1.4. Fundamental solution; 1.5. Some special functions; Chapter 2. Basic Definitions and Properties of Fractional Integrals and Derivatives; 2.1. Definitions of fractional integrals and derivatives; 2.1.1. Riemann-Liouville fractional integrals and derivatives.
  • 2.1.1.1. Laplace transform of Riemann-Liouville fractional integrals and derivatives2.1.2. Riemann-Liouville fractional integrals and derivatives on the real half-axis; 2.1.3. Caputo fractional derivatives; 2.1.4. Riesz potentials and Riesz derivatives; 2.1.5. Symmetrized Caputo derivative; 2.1.6. Other types of fractional derivatives; 2.1.6.1. Canavati fractional derivative; 2.1.6.2. Marchaud fractional derivatives; 2.1.6.3. Grünwald-Letnikov fractional derivatives; 2.2. Some additional properties of fractional derivatives; 2.2.1. Fermat theorem for fractional derivative.
  • 2.2.2. Taylor theorem for fractional derivatives2.3. Fractional derivatives in distributional setting; 2.3.1. Definition of the fractional integral and derivative; 2.3.2. Dependence of fractional derivative on order; 2.3.3. Distributed-order fractional derivative; PART 2. MECHANICAL SYSTEMS; Chapter 3. Waves in Viscoelastic Materials of Fractional-Order Type; 3.1. Time-fractional wave equation on unbounded domain; 3.1.1. Time-fractional Zener wave equation; 3.1.2. Time-fractional general linear wave equation; 3.1.3. Numerical examples; 3.1.3.1. Case of time-fractional Zener wave equation.
  • 3.1.3.2. Case of time-fractional general linear wave equation3.2. Wave equation of the fractional Eringen-type; 3.3. Space-fractional wave equation on unbounded domain; 3.3.1. Solution to Cauchy problem for space-fractional wave equation; 3.3.1.1. Limiting case ß -> 1; 3.3.1.2. Case u0(x) ... ; 3.3.1.3. Case u0 (x) ... ; 3.3.1.4. Case u0(x) ... ; 3.3.2. Solution to Cauchy problem for fractionally damped space-fractional wave equation; 3.4. Stress relaxation, creep and forced oscillations of a viscoelastic rod; 3.4.1. Formal solution to systems [3.110]-[3.112], [3.113] and either [3.114] or [3.115].