How to Design, Analyse and Report Cluster Randomised Trials in Medicine and Health Related Research.
A complete guide to understanding cluster randomised trials Written by two researchers with extensive experience in the field, this book presents a complete guide to the design, analysis and reporting of cluster randomised trials. It spans a wide range of applications: trials in developing countries...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2014.
|
Colección: | Statistics in practice.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acronyms and abbreviations
- Chapter 1 Introduction
- 1.1 Randomised controlled trials
- 1.1.1 A-Allocation at random
- 1.1.2 B-Blindness
- 1.1.3 C-Control
- 1.2 Complex interventions
- 1.3 History of cluster randomised trials
- 1.4 Cohort and field trials
- 1.5 The field/community trial
- 1.5.1 The REACT trial
- 1.5.2 The Informed Choice leaflets trial
- 1.5.3 The Mwanza trial
- 1.5.4 The paramedics practitioner trial
- 1.6 The cohort trial
- 1.6.1 The PoNDER trial.
- 1.6.2 The DESMOND trial
- 1.6.3 The Diabetes Care from Diagnosis trial
- 1.6.4 The REPOSE trial
- 1.6.5 Other examples of cohort cluster trials
- 1.7 Field versus cohort designs
- 1.8 Reasons for cluster trials
- 1.9 Between- and within-cluster variation
- 1.10 Random-effects models for continuous outcomes
- 1.10.1 The model
- 1.10.2 The intracluster correlation coefficient
- 1.10.3 Estimating the intracluster correlation (ICC) coefficient.
- 1.10.4 Link between the Pearson correlation coefficient and the intraclass correlation coefficient
- 1.11 Random-effects models for binary outcomes
- 1.11.1 The model
- 1.11.2 The ICC for binary data
- 1.11.3 The coefficient of variation
- 1.11.4 Relationship between cvc and u for binary data
- 1.12 The design effect
- 1.13 Commonly asked questions
- 1.14 Websources
- Exercise
- Appendix 1.A
- Chapter 2 Design issues
- 2.1 Introduction
- 2.2 Issues for a simple intervention
- 2.2.1 Phases of a trial
- 2.2.1.1 Preclinical.
- 2.2.1.2 Sequence of phases
- 2.2.2 'Pragmatic' and 'explanatory' trials
- 2.2.3 Intention-to-treat and per-protocol analyses
- 2.2.4 Non-inferiority and equivalence trials
- 2.3 Complex interventions
- 2.3.1 Design of complex interventions
- 2.3.1.1 Theory (preclinical)
- 2.3.2 Phase I modelling/qualitative designs
- 2.3.3 Pilot or feasibility studies
- 2.3.4 Example of pilot/feasibility studies in cluster trials
- 2.4 Recruitment bias
- 2.5 Matched-pair trials
- 2.5.1 Design of matched-pair studies.
- 2.5.2 Limitations of matched-pairs designs
- 2.5.3 Example of matched-pair design: The Family Heart Study
- 2.6 Other types of designs
- 2.6.1 Cluster factorial designs
- 2.6.2 Example cluster factorial trial
- 2.6.3 Cluster crossover trials
- 2.6.4 Example of a cluster crossover trial
- 2.6.5 Stepped wedge
- 2.6.6 Pseudorandomised trials
- 2.7 Other design issues
- 2.8 Strategies for improving precision
- 2.9 Randomisation
- 2.9.1 Reasons for randomisation
- 2.9.2 Simple randomisation
- 2.9.3 Stratified randomisation.