Cargando…

Multi-dimensional Imaging.

Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image captu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Javidi, Bahram
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiley-IEEE Press, 2014.
Colección:Wiley - IEEE.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • About the Editors xv
  • List of Contributors xvii
  • Preface xxi
  • Acknowledgments xxiii
  • Part I MULTI-DIMENSIONAL DIGITAL HOLOGRAPHIC TECHNIQUES
  • 1 Parallel Phase-Shifting Digital Holography 3 / Yasuhiro Awatsuji
  • 1.1 Chapter Overview 3
  • 1.2 Introduction 3
  • 1.3 Digital Holography and Phase-Shifting Digital Holography 4
  • 1.4 Parallel Phase-Shifting Digital Holography 6
  • 1.5 Experimental Demonstration of Parallel Phase-Shifting Digital Holography 8
  • 1.6 High-Speed Parallel Phase-Shifting Digital Holography System 12
  • 1.7 Single-Shot Femtosecond-Pulsed Parallel Phase-Shifting Digital Holography System 14
  • 1.8 Portable Parallel Phase-Shifting Digital Holography System 17
  • 1.9 Functional Extension of Parallel Phase-Shifting Digital Holography 17
  • 1.10 Prospects and Conclusion 20
  • 2 Imaging and Display of Human Size Scenes by Long Wavelength Digital Holography 25 / Massimiliano Locatelli, Eugenio Pugliese, Melania Paturzo, Vittorio Bianco, Andrea Finizio, Anna Pelagotti, Pasquale Poggi, Lisa Miccio, Riccardo Meucci and Pietro Ferraro
  • 2.1 Introduction 25
  • 2.2 Digital Holography Principles 25
  • 2.3 Infrared Digital Holography 33
  • 2.4 Latest Achievements in IRDH 34
  • 2.5 Conclusion 46
  • 3 Digital Hologram Processing in On-Axis Holography 51 / Corinne Fournier, Lo‚Sic Denis, Mozhdeh Seifi and Thierry Fournel
  • 3.1 Introduction 51
  • 3.2 Model of Hologram Image Formation 52
  • 3.3 DH Reconstruction Based on Back Propagation 56
  • 3.4 Hologram Reconstruction Formulated as an Inverse Problem 57
  • 3.5 Estimation of Accuracy 64
  • 3.6 Fast Processing Algorithms 65
  • 3.7 Conclusion 69
  • 4 Multi-dimensional Imaging by Compressive Digital Holography 75 / Yair Rivenson, Adrian Stern, Joseph Rosen, and Bahram Javidi
  • 4.1 Introduction 75
  • 4.2 Compressive Sensing Preliminaries 76
  • 4.3 Conditions for Accurate Reconstruction of Compressive Digital Holographic Sensing 79
  • 4.4 Applications of Compressive Digital Holographic Sensing 84.
  • 4.5 Conclusion 96
  • 5 Dispersion Compensation in Holograms Reconstructed by Femtosecond Light Pulses 101 / Omel Mendoza-Yero, Jorge Přez-Vizcan̕o, Llus̕ Martn̕ez-Len̤, Gladys Mn̕guez-Vega, Vicent Climent, Jess Lancis and Pedro Andrš
  • 5.1 Introduction 101
  • 5.2 Fundamental Features of the DCM 102
  • 5.3 Holographic Applications of the DCM with Ultrafast Light Pulses 115
  • 5.4 Conclusion 122
  • Part II BIOMEDICAL APPLICATIONS AND MICROSCOPY
  • 6 Advanced Digital Holographic Microscopy for Life Science Applications 129 / Frank Dubois, Ahmed El Mallahi, Christophe Minetti and Catherine Yourassowsky
  • 6.1 Introduction 129
  • 6.2 DHM Configurations 130
  • 6.3 Automated 3D Holographic Analysis 135
  • 6.4 Applications 139
  • 6.5 Conclusion 148
  • 7 Programmable Microscopy 153 / Tobias Haist, Malte Hasler, Wolfang Osten and Michal Baranek
  • 7.1 Introduction 153
  • 7.2 Optical Design Considerations and Some Typical Setups 154
  • 7.3 Liquid Crystal Spatial Light Modulator 158
  • 7.4 Aberration Correction 160
  • 7.5 Phase Contrast Imaging 163
  • 7.6 Stereo Microscopy 168
  • 7.7 Conclusion 169
  • 8 Holographic Three-Dimensional Measurement of an Optically Trapped Nanoparticle 175 / Yoshio Hayasaki
  • 8.1 Introduction 175
  • 8.2 Experimental Setup 177
  • 8.3 Experimental Results of 3D Position Measurement of Nanoparticles 182
  • 8.4 Twilight Field Technique for Holographic Position Detection of Nanoparticles 188
  • 8.5 Conclusion 191
  • 9 Digital Holographic Microscopy: A New Imaging Technique to Quantitatively Explore Cell Dynamics with Nanometer Sensitivity 197 / Pierre Marquet and Christian Depeursinge
  • 9.1 Chapter Overview 197
  • 9.2 Introduction 198
  • 9.3 Holographic Techniques 200
  • 9.4 Cell Imaging with Digital Holographic Quantitative Phase Microscopy 206
  • 9.5 Future Issues 213
  • 10 Super Resolved Holographic Configurations 225 / Amihai Meiri, Eran Gur, Javier Garcia, Vicente Micƒo, Bahram Javidi and Zeev Zalevsky
  • 10.1 Introduction 225.
  • 10.2 Digital Holography 226
  • 10.3 Metal Nanoparticles 227
  • 10.4 Resolution Enhancement in Digital Holography 229
  • 10.5 Field of View Enhancement in Digital Holography 231
  • 10.6 Eliminating the DC Term and the Twin Images 233
  • 10.7 Additional Applications 235
  • Part III MULTI-DIMENSIONAL IMAGING AND DISPLAY
  • 11 Three-Dimensional Integral Imaging and Display 243 / Manuel Martƒinez-Corral, Adriǹ Dorado, Anabel LLavador, Genaro Saavedra and Bahram Javidi
  • 11.1 Introduction 243
  • 11.2 Basic Theory 245
  • 11.3 The Plenoptic Function 246
  • 11.4 Methods for the Capture of the Plenoptic Field 249
  • 11.5 Walking in Plenoptic Space 255
  • 11.6 Reconstruction of Intensity Distribution in Different Depth Planes 257
  • 11.7 Implementation of the Integral Imaging Display Device 261
  • 11.8 Conclusion 262
  • 12 Image Formats of Various 3-D Displays 267 / Jung-Young Son, Chun-Hea Lee, Wook-Ho Son, Min-Chul Park and Bahram Javidi
  • 12.1 Chapter Overview 267
  • 12.2 Introduction 268
  • 12.3 Multiplexing Schemes 269
  • 12.4 Image Formats for 3-D Imaging 271
  • 13 Ray-based and Wavefront-based 3D Representations for Holographic Displays 303 / Masahiro Yamaguchi and Koki Wakunami
  • 13.1 Introduction 303
  • 13.2 Ray-based and Wavefront-based 3D Displays 303
  • 13.3 Conversion between Ray-based and Wavefront 3D Representations 307
  • 13.4 Hologram Printer Based on a Full-Parallax Holographic Stereogram 308
  • 13.5 Computational Holography Using a Ray-Sampling Plane 310
  • 13.6 Occlusion Culling for Computational Holography Using the Ray-Sampling Plane 313
  • 13.7 Scanning Vertical Camera Array for Computational Holography 315
  • 13.8 Conclusion and Future Issues 323
  • 14 Rigorous Diffraction Theory for 360 Computer-Generated Holograms 327 / Toyohiko Yatagai, Yusuke Sando and Boaz Jessie Jackin
  • 14.1 Introduction 327
  • 14.2 Three-Dimensional Object and Its Diffracted Wavefront 328
  • 14.3 Point-Spread Function Approach for Spherical Holography 333
  • 14.4 Rigorous Point-Spread Function Approach 336.
  • 14.5 Conclusion 346
  • Part IV SPECTRAL AND POLARIMETRIC IMAGING
  • 15 High-Speed 3D Spectral Imaging with Stimulated Raman Scattering 351 / Yasuyuki Ozeki and Kazuyoshi Itoh
  • 15.1 Introduction 351
  • 15.2 Principles and Advantages of SRS Microscopy 352
  • 15.3 Spectral Imaging with SRS 358
  • 15.4 High-Speed Spectral Imaging 360
  • 15.5 Summary 367
  • 16 Spectropolarimetric Imaging Techniques with Compressive Sensing 371 / Fernando Soldevila, Esther Irles, Vicente Durǹ, Pere Clemente, Mercedes Fernǹdez-Alonso, Enrique Tajahuerce and Jess Lancis
  • 16.1 Chapter Overview 371
  • 16.2 Single-Pixel Imaging and Compressive Sensing 372
  • 16.3 Single-Pixel Polarimetric Imaging 373
  • 16.4 Single-Pixel Multispectral Imaging 377
  • 16.5 Single-Pixel Spectropolarimetric Imaging 382
  • 16.6 Conclusion 388
  • 17 Passive Polarimetric Imaging 391 / Daniel A. LeMaster and Michael T. Eismann
  • 17.1 Introduction 391
  • 17.2 Representations of Polarized Light 392
  • 17.3 Polarized Reflection and Emission 397
  • 17.4 Atmospheric Contributions to Polarimetric Signatures 404
  • 17.5 Data Reduction Matrix Analysis of Modulated Polarimeters 411
  • 17.6 Fourier Domain Analysis of Modulated Polarimeters 417
  • 17.7 Radiometric and Polarimetric Calibration 421
  • 17.8 Polarimetric Target Detection 424
  • Index 429.