Cargando…

Theory of Nonlinear Structural Analysis : the Force Analogy Method for Earthquake Engineering.

A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Li, Gang
Otros Autores: Wong, Kevin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Theory of Nonlinear Structural Analysis: The Force Analogy Method for Earthquake Engineering; Copyright; Contents; Preface; About the Authors; 1 Introduction; 1.1 History of the Force Analogy Method; 1.2 Applications of the Force Analogy Method; 1.2.1 Structural Vibration Control; 1.2.2 Modal Dynamic Analysis Method; 1.2.3 Other Design and Analysis Areas; 1.3 Background of the Force Analogy Method; References; 2 Nonlinear Static Analysis; 2.1 Plastic Rotation; 2.2 Force Analogy Methodfor Static Single-Degree-of-Freedom Systems; 2.2.1 In elastic Displacement.
  • 2.2.2 Application of the FAM on SDOF System2.2.3 Nonlinear Analysis Using FAM; 2.3 Nonlinear Structural Analysis of Moment-Resisting Frames; 2.4 Force Analogy Method for Static Multi-Degree-of-Freedom Systems; 2.5 Nonlinear Static Examples; 2.6 Static Condensation; References; 3 Nonlinear Dynamic Analysis; 3.1 State Space Methodf or Linear Dynamic Analysis; 3.1.1 Equation of Motion; 3.1.2 State Space Solution; 3.1.3 Solution Procedure; 3.2 Dynamic Analysis with Material Nonlinearity; 3.2.1 Force Analogy Method; 3.2.2 State Space Analysis with the Force Analogy Method; 3.2.3 Solution Procedure.
  • 3.3 Nonlinear Dynamic Analysis with Static Condensation3.4 Nonlinear Dynamic Examples; References; 4 Flexural Member; 4.1 Bending and Shear Behaviors; 4.1.1 HystereticModels; 4.1.2 Displacement Decomposition; 4.1.3 Local Plastic Mechanisms; 4.2 Inelastic Mechanisms of Flexural Members; 4.2.1 Elastic Displacement x; 4.2.2 Plastic Bending Displacement x; 4.2.3 Plastic Shear Displacement x; 4.2.4 Combination of the Bending and Shear Behaviors; 4.3 Nonlinear Static Analysis of Structures with Flexural Members; 4.3.1 Force Analogy Method for Static Single-Degree-of-Freedom Systems.
  • 4.3.2 Force Analogy Method for Static Multi-Degree-of-Freedom Systems4.4 Nonlinear Dynamic Analysis of Structures with Flexural Members; 4.4.1 Hysteretic Behaviors of the Flexural Members; 4.4.2 Solution Procedure of the FAM; References; 5 Axial Deformation Member; 5.1 Physical Theory Models for Axial Members; 5.1.1 General Parameters; 5.1.2 Displacement Decomposition; 5.2 Sliding Hinge Mechanisms; 5.3 Force Analogy Method for Static Axial Members; 5.3.1 RegionsO-AaandO-F; 5.3.2 Region F-G; 5.3.3 Regions Aa-A and A-B; 5.4 Force Analogy Method for Cycling Response Analysis of Axial Members.
  • 5.4.1 Region B-C5.4.2 Region C-D; 5.4.3 Region D-A2; 5.4.4 Region D-E; 5.4.5 Region E-F; 5.4.6 Region Aa2-A2; 5.5 Application of the Force Analogy Methodin Concentrically BracedFrames; 5.5.1 Force Analogy Method for Static SDOF CBFs; 5.5.2 Force Analogy Method for Static MDOF CBFs; 5.5.3 Force Analogy Method for Dynamical CBF sunder Earthquake Loads; References; 6 Shear Member; 6.1 Physical Theory Models of Shear Members; 6.1.1 Flexural Behavior; 6.1.2 Axial Behavior; 6.1.3 Shear Behavior; 6.2 Local Plastic Mechanisms inthe FAM; 6.2.1 Displacement Decomposition; 6.2.2 Behavior of VSH.