Cargando…

Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 /

This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contai...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Assani, Idris (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, [2014]
Colección:Proceedings in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn874162417
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 140221t20142014gw a ob 100 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d N$T  |d ZCU  |d OCLCO  |d OCLCF  |d OSU  |d OCLCO  |d YDXCP  |d EBLCP  |d IDEBK  |d DEBSZ  |d OCLCO  |d OCL  |d OCLCO  |d COO  |d OCLCO  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d VGM  |d MERUC  |d OCLCQ  |d DEGRU  |d U3W  |d OCLCQ  |d STF  |d VTS  |d NRAMU  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
016 7 |a 1027551572  |2 DE-101 
019 |a 870590018  |a 900020958  |a 979745647  |a 990736437  |a 1055370823  |a 1058966031  |a 1066457516  |a 1081210142 
020 |a 9783110298208  |q (electronic bk.) 
020 |a 3110298201  |q (electronic bk.) 
020 |z 9783110298130  |q (hardcover) 
020 |z 3110298139  |q (hardcover) 
020 |z 9783110298215 
024 7 |a 10.1515/9783110298208  |2 doi 
024 8 |a 99962276718 
029 1 |a AU@  |b 000052839746 
029 1 |a DEBBG  |b BV043780398 
029 1 |a DEBBG  |b BV044062434 
029 1 |a DEBSZ  |b 405619812 
029 1 |a DEBSZ  |b 47281544X 
035 |a (OCoLC)874162417  |z (OCoLC)870590018  |z (OCoLC)900020958  |z (OCoLC)979745647  |z (OCoLC)990736437  |z (OCoLC)1055370823  |z (OCoLC)1058966031  |z (OCoLC)1066457516  |z (OCoLC)1081210142 
050 4 |a QA611.5  |b .E74 2013eb 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
072 7 |a QA  |2 lcco 
082 0 4 |a 510 
049 |a UAMI 
245 0 0 |a Ergodic theory and dynamical systems :  |b proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 /  |c edited by Idris Assani. 
264 1 |a Berlin :  |b De Gruyter,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (x, 276 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a De Gruyter Proceedings in Mathematics 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed March 11, 2014). 
505 0 |a Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem. 
505 8 |a 3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem. 
505 8 |a 1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna. 
505 8 |a 3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology. 
505 8 |a 3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition. 
505 8 |a 5.2 New Tools -- Technical Details. 
520 |a This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These co. 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Ergodic theory  |v Congresses. 
650 0 |a Differentiable dynamical systems  |v Congresses. 
650 6 |a Théorie ergodique  |v Congrès. 
650 6 |a Dynamique différentiable  |v Congrès. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Differentiable dynamical systems  |2 fast 
650 7 |a Ergodic theory  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Assani, Idris,  |e editor. 
758 |i has work:  |a Ergodic theory and dynamical systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFQt9JQ4JMJv3GG8jQWHJC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |z 9783110298215 
776 0 |w (GyWOH)har120281809 
776 0 |z 9783110298208 
776 0 |w (GyWOH)har135010454 
776 0 8 |i Print version:  |t Ergodic theory and dynamical systems.  |d Berlin : De Gruyter, [2014]  |z 9783110298130  |z 3110298139 
830 0 |a Proceedings in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1113337  |z Texto completo 
936 |a BATCHLOAD 
938 |a De Gruyter  |b DEGR  |n 9783110298208 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1113337 
938 |a ebrary  |b EBRY  |n ebr10838309 
938 |a EBSCOhost  |b EBSC  |n 699622 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27541814 
938 |a YBP Library Services  |b YANK  |n 10817931 
994 |a 92  |b IZTAP