Cargando…

Knots.

This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Burde, Gerhard, 1931- (Autor), Zieschang, Heiner (Autor), Heusener, Michael (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, 2013.
Edición:3rd [edition] /
Colección:De Gruyter studies in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn872700642
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 140119s2013 gw ob 001 0 eng d
040 |a CNSPO  |b eng  |e pn  |c CNSPO  |d YDXCP  |d OCLCO  |d N$T  |d CDX  |d OCLCF  |d CNKEY  |d CCO  |d LLB  |d EBLCP  |d IDEBK  |d DEBSZ  |d COO  |d AZU  |d SFB  |d FVL  |d NMC  |d UV0  |d K6U  |d DEBBG  |d OCLCQ  |d N15  |d S2H  |d OCLCQ  |d UIU  |d Z5A  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d WYU  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 865329956  |a 958539879 
020 |a 3110270781  |q (electronic bk.) 
020 |a 9783110270785  |q (electronic bk.) 
020 |z 9783110270747 
020 |z 3110270749 
029 1 |a DEBBG  |b BV042989412 
029 1 |a DEBBG  |b BV043034151 
029 1 |a DEBBG  |b BV044062515 
029 1 |a DEBSZ  |b 399565442 
029 1 |a DEBSZ  |b 421231378 
029 1 |a GBVCP  |b 813953812 
029 1 |a NZ1  |b 16053636 
035 |a (OCoLC)872700642  |z (OCoLC)865329956  |z (OCoLC)958539879 
050 4 |a QA612.2  |b .B87 2013 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.2242  |2 23 
084 |a SK 300  |q hdub  |2 rvk  |0 (DE-625)rvk/143230 
049 |a UAMI 
100 1 |a Burde, Gerhard,  |d 1931-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJqbmkvCFXbYpc4BRGhj4q 
245 1 0 |a Knots. 
250 |a 3rd [edition] /  |b by Gerhard Burde, Heiner Zieschang, Michael Heusener. 
264 1 |a Berlin ;  |a Boston :  |b Walter de Gruyter GmbH & Co. KG,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. 
505 8 |a Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. 
520 |a This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Knot theory. 
650 6 |a Théorie des nœuds. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Knot theory  |2 fast 
653 |a Alexander Polynomials. 
653 |a Braids. 
653 |a Branched Coverings. 
653 |a Cyclic Periods of Knots. 
653 |a Factorization. 
653 |a Fibred Knots. 
653 |a Homfly Polynomials. 
653 |a Knot Groups. 
653 |a Knots. 
653 |a Links. 
653 |a Montesinos Links. 
653 |a Seifert Matrices. 
653 |a Seifert Surface. 
700 1 |a Zieschang, Heiner,  |e author. 
700 1 |a Heusener, Michael,  |e author. 
776 0 8 |i Print version:  |z 9783110270747  |z 3110270749  |w (DLC) 2013043504 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1130364  |z Texto completo 
936 |a BATCHLOAD 
938 |a Coutts Information Services  |b COUT  |n 27055022 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1130364 
938 |a EBSCOhost  |b EBSC  |n 674601 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27055022 
938 |a YBP Library Services  |b YANK  |n 10817537 
994 |a 92  |b IZTAP