Cargando…

Advances in laser and optics research.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: NEW YORK: NOVA Science 2010.
Colección:Advances in Laser and Optics Research.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • ADVANCES IN LASERAND OPTICS RESEARCH, VOLUME 3
  • ADVANCES IN LASERAND OPTICS RESEARCH, VOLUME 3
  • CONTENTS
  • PREFACE
  • ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT
  • 1. Introduction
  • 2. Background
  • 2.1. Role of Pre-Pulse Electron Density
  • 2.2. Engineering the Pre-Pulse Electron Density
  • 3. Operating Characteristics of KE-CVLs
  • 3.1. Output Power and Efficiency
  • 3.2. Pulse Rate Scaling of KE-CVLS
  • 3.3. Specific Average-Output Power Scaling
  • 3.4. Temporal Characteristics of KE-CVL Output
  • 3.5. Spatial Characteristics of KE-CVL Output3.6. High Beam Quality Operation of KE-CVLs
  • 4. Diagnostics of Kinetically Enhanced CVLs
  • 4.1. Copper Density Measurement
  • 4.2. Computer Modelling of KE-CVLs
  • 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration
  • 6. High Power UV Generation from KE-CVLs
  • Acknowledgments
  • References
  • MERGING QUANTUM THEORY INTO CLASSICALPHYSICS
  • Abstract
  • 1. Introduction
  • 2. Comparison of Classical and Quantum Electrodynamics
  • 2.1. Modes of the ElectromagneticWaves
  • 2.2. Elementary Light-Matter Interaction in Classical Optics2.3. The Classical Zero Point Field
  • 2.4. The Zero Point Field and the Detection of Low Level Light
  • 2.5. Spontaneous Emission and Absorption: Einsteinâ€?s Coefficients
  • 2.6. Mechanism of Emission and Absorption of a Photon
  • 2.7. Comparison of Quantum and Classical Electrodynamics
  • 3. Some Properties of Nonlinear Waves: The (3+0)D Solitons
  • 3.1. The Filaments of Light
  • 3.2. Perturbation of a Filament by a Magnetic Nonlinearity
  • 4. Tentative Setting of a Classical Theory Including the ImportantQuantum Results4.1. Is Matter Made of Electromagnetic (3+0)D Solitons?
  • 4.2. Inserting the Quantum Calculation of Energies into the Classical Theory
  • 5. Conclusion
  • References
  • A POSSIBLE SCENARIO FOR VOLUMETRICDISPLAY THROUGH NANOPARTICLE SUSPENSIONS
  • Abstract
  • References
  • STATISTICAL PROPERTIES OF NONLINEARPHASE NOISE
  • Abstract
  • 1. Introduction
  • 2. Joint Statistics of Nonlinear Phase Noise and Electric Field
  • 2.1. Normalization of Nonlinear Phase Noise
  • 2.2. Series Expansion2.3. Joint Characteristic Function
  • 3. The Probability Density Function of Nonlinear Phase Noise
  • 4. Some Joint Characteristic Functions
  • 4.1. Joint Characteristic Function of Nonlinear Phase Noise and ReceivedIntensity
  • 4.2. Joint Characteristic Function of Nonlinear Phase Noise and Phase ofAmplifier Noise
  • 5. Error Probability of DPSK Signal
  • 5.1. Phase Distribution
  • 5.2. Error Probability
  • 5.3. Approximation of Independence
  • 5.4. Numerical Results
  • 6. Compensation of Nonlinear Phase Noise
  • 6.1. Linear Compensation