Cargando…

Molecular Imaging in Nano MRI /

The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ting, Michael (Software engineer)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, U.K. : Hoboken, N.J. : ISTE ; Wiley, 2014.
Colección:Focus nanoscience and nanotechnology series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn871224295
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140301s2014 nju ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d N$T  |d DG1  |d CUS  |d YDXCP  |d DEBSZ  |d OCLCA  |d OCLCQ  |d UA@  |d E7B  |d COO  |d DEBBG  |d OCLCQ  |d COCUF  |d DG1  |d MOR  |d LIP  |d PIFBY  |d ZCU  |d MERUC  |d OCLCQ  |d OCLCF  |d U3W  |d OCLCQ  |d STF  |d ICG  |d INT  |d VT2  |d UAB  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 871318314  |a 876043676  |a 881363745  |a 883939488  |a 992928397 
020 |a 9781118760932  |q (electronic bk.) 
020 |a 111876093X  |q (electronic bk.) 
020 |a 9781118760895  |q (electronic bk.) 
020 |a 1118760891  |q (electronic bk.) 
020 |a 9781118760949  |q (electronic bk.) 
020 |a 1118760948  |q (electronic bk.) 
020 |z 9781848214743  |q (hbk.) 
020 |z 184821474X  |q (hbk.) 
029 1 |a AU@  |b 000055959752 
029 1 |a CHBIS  |b 010442005 
029 1 |a CHNEW  |b 000942855 
029 1 |a CHVBK  |b 480231508 
029 1 |a DEBBG  |b BV043396571 
029 1 |a DEBBG  |b BV043607762 
029 1 |a DEBSZ  |b 405661800 
029 1 |a DEBSZ  |b 406590486 
029 1 |a DEBSZ  |b 424366797 
029 1 |a DEBSZ  |b 485046202 
029 1 |a NZ1  |b 15497408 
029 1 |a NZ1  |b 15906667 
035 |a (OCoLC)871224295  |z (OCoLC)871318314  |z (OCoLC)876043676  |z (OCoLC)881363745  |z (OCoLC)883939488  |z (OCoLC)992928397 
050 4 |a T174.7 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.5  |2 22 
049 |a UAMI 
100 1 |a Ting, Michael  |c (Software engineer) 
245 1 0 |a Molecular Imaging in Nano MRI /  |c Michael Ting. 
260 |a London, U.K. :  |b ISTE ;  |a Hoboken, N.J. :  |b Wiley,  |c 2014. 
300 |a 1 online resource (x, 77 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Focus series 
588 0 |a Online resource; title from PDF title page (Wiley, viewed April 4, 2014). 
505 0 |6 880-01  |a Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics. 
505 8 |a 3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example. 
520 |a The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Magnetic resonance imaging  |x Computer programs. 
650 0 |a Nanoscience. 
650 0 |a Nuclear magnetic resonance  |x Computer programs. 
650 6 |a Imagerie par résonance magnétique  |x Logiciels. 
650 6 |a Nanosciences. 
650 6 |a Résonance magnétique nucléaire  |x Logiciels. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Nanoscience  |2 fast 
758 |i has work:  |a Molecular imaging in nano MRI (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGm9k3hRf3QTtQMFGctvVC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ting, Michael.  |t Molecular imaging in nano MRI.  |d London, U.K : ISTE ; Hoboken, N.J. : Wiley, 2014  |z 9781848214743  |w (OCoLC)859185634 
830 0 |a Focus nanoscience and nanotechnology series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1638074  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g ch. 1  |t Nano MRI --  |g ch. 2  |t Sparse Image Reconstruction --  |g 2.1.  |t Introduction --  |g 2.2.  |t Problem formulation --  |g 2.3.  |t Validity of the observation model in MRFM --  |g 2.4.  |t Literature review --  |g 2.4.1.  |t Sparse denoising --  |g 2.4.2.  |t Variable selection --  |g 2.4.3.  |t Compressed sensing --  |g 2.5.  |t Reconstruction performance criteria --  |g ch. 3  |t Iterative Thresholding Methods --  |g 3.1.  |t Introduction --  |g 3.2.  |t Separation of deconvolution and denoising --  |g 3.2.1.  |t Gaussian noise statistics --  |g 3.2.2.  |t Poisson noise statistics --  |g 3.3.  |t Choice of sparse denoising operator in the case of Gaussian noise statistics --  |g 3.3.1.  |t Comparison to the projected gradient method --  |g 3.4.  |t Hyperparameter selection --  |g 3.5.  |t MAP estimators using the LAZE image prior --  |g 3.5.1.  |t MAP1 --  |g 3.5.2.  |t MAP2 --  |g 3.5.3.  |t Comparison of MAP1 versus MAP2 --  |g 3.6.  |t Simulation example --  |g 3.7.  |t Future directions --  |g ch. 4  |t Hyperparameter Selection Using the SURE Criterion --  |g 4.1.  |t Introduction --  |g 4.2.  |t SURE for the lasso estimator --  |g 4.3.  |t SURE for the hybrid estimator --  |g 4.4.  |t Computational considerations --  |g 4.5.  |t Comparison with other criteria --  |g 4.6.  |t Simulation example --  |g ch. 5  |t Monte Carlo Approach: Gibbs Sampling --  |g 5.1.  |t Introduction --  |g 5.2.  |t Casting the sparse image reconstruction problem in the Bayesian framework --  |g 5.3.  |t MAP estimate using the Gibbs sampler --  |g 5.3.1.  |t Conditional density of w --  |g 5.3.2.  |t Conditional density of a --  |g 5.3.3.  |t Conditional density of sigma2 --  |g 5.3.4.  |t Conditional density of σ2 --  |g 5.4.  |t Uncertainty in the blur point spread function --  |g 5.5.  |t Simulation example --  |g ch. 6  |t Simulation Study --  |g 6.1.  |t Introduction --  |g 6.2.  |t Reconstruction simulation study --  |g 6.2.1.  |t Binary-valued x --  |g 6.2.2.  |t {0, ±1}-valued x --  |g 6.3.  |t Discussion. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26202849 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26152421 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1638074 
938 |a ebrary  |b EBRY  |n ebr10842284 
938 |a EBSCOhost  |b EBSC  |n 707196 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27593131 
938 |a YBP Library Services  |b YANK  |n 10795183 
938 |a YBP Library Services  |b YANK  |n 11678833 
938 |a YBP Library Services  |b YANK  |n 11675119 
994 |a 92  |b IZTAP