Cargando…

Multilinear subspace learning : dimensionality reduction of multidimensional data /

"Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimens...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lu, Haiping (Autor), Plataniotis, Konstantinos N. (Autor), Venetsanopoulos, A. N. (Anastasios N.), 1941- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press/Taylor and Francis Group, [2014]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn871223692
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 140301t20142014flua ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d CUS  |d WAU  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCF  |d E7B  |d UMI  |d DEBBG  |d OCLCQ  |d MOR  |d MERUC  |d OCLCQ  |d CEF  |d OCLCQ  |d WYU  |d YDX  |d OCLCQ  |d VT2  |d SFB  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 876044317  |a 899245816  |a 961544392  |a 1065944165  |a 1156386107  |a 1175722031 
020 |a 9781439857298 
020 |a 1439857296 
020 |a 1439857245 
020 |a 9781439857243 
020 |a 0429108095 
020 |a 9780429108099 
020 |z 9781439857243 
029 1 |a AU@  |b 000055959600 
029 1 |a AU@  |b 000062626200 
029 1 |a AU@  |b 000068988642 
029 1 |a CHNEW  |b 000688760 
029 1 |a CHNEW  |b 000688761 
029 1 |a CHNEW  |b 000899061 
029 1 |a CHNEW  |b 001057822 
029 1 |a CHVBK  |b 569744253 
029 1 |a DEBBG  |b BV042490543 
029 1 |a DEBSZ  |b 405625200 
029 1 |a DEBSZ  |b 43154235X 
029 1 |a DEBSZ  |b 434837229 
029 1 |a DEBSZ  |b 449391981 
029 1 |a GBVCP  |b 882738909 
035 |a (OCoLC)871223692  |z (OCoLC)876044317  |z (OCoLC)899245816  |z (OCoLC)961544392  |z (OCoLC)1065944165  |z (OCoLC)1156386107  |z (OCoLC)1175722031 
037 |a CL0500000522  |b Safari Books Online 
050 4 |a QA76.9.D33 L825 2014 
082 0 4 |a 005.7 
084 |a COM021030  |a COM037000  |a TEC007000  |2 bisacsh 
049 |a UAMI 
100 1 |a Lu, Haiping,  |e author. 
245 1 0 |a Multilinear subspace learning :  |b dimensionality reduction of multidimensional data /  |c Haiping Lu, Konstantinos N. Plataniotis, Anastasios N. Venetsanopoulos. 
264 1 |a Boca Raton, FL :  |b CRC Press/Taylor and Francis Group,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xxvii, 268 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC machine learning & pattern recognition series 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Fundamentals and Foundations -- Linear Subspace Learning for Dimensionality Reduction -- Fundamentals of Multilinear Subspace Learning -- Overview of Multilinear Subspace Learning -- Algorithmic and Computational Aspects -- Algorithms and Applications -- Multilinear Principal Component Analysis -- Multilinear Discriminant Analysis -- Multilinear ICA, CCA, and PLS -- Applications of Multilinear Subspace Learning -- Appendix A: Mathematical Background -- Appendix B: Data and Preprocessing -- Appendix C: Software. 
520 |a "Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today's most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB source code, data, and other materials are available at www.comp.hkbu.edu.hk/~haiping/MSL.html"--  |c Provided by publisher 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data compression (Computer science) 
650 0 |a Big data. 
650 0 |a Multilinear algebra. 
650 6 |a Données  |x Compression (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electrical.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Data compression (Computer science)  |2 fast 
650 7 |a Multilinear algebra  |2 fast 
700 1 |a Plataniotis, Konstantinos N.,  |e author. 
700 1 |a Venetsanopoulos, A. N.  |q (Anastasios N.),  |d 1941-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJgXg6y9wXV6wtdBD8HDMP 
758 |i has work:  |a Multilinear subspace learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH3pkbM6gfpRvDYDBgqb3P  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lu, Haiping.  |t Multilinear subspace learning.  |d Boca Raton : CRC Press, [2014]  |z 9781439857243  |w (DLC) 2013039517  |w (OCoLC)659750493 
830 0 |a Chapman & Hall/CRC machine learning & pattern recognition series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1480655  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1480655 
938 |a ebrary  |b EBRY  |n ebr10841128 
938 |a YBP Library Services  |b YANK  |n 15918248 
938 |a YBP Library Services  |b YANK  |n 10690135 
994 |a 92  |b IZTAP