Cargando…

Function Classes on the Unit Disc : an Introduction.

Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pavlovic, Miroslav (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, [2013]
Colección:De Gruyter studies in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn870589848
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 140215t20132013gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CDX  |d IDEBK  |d AZU  |d N$T  |d COO  |d OCLCF  |d E7B  |d YDXCP  |d DEBSZ  |d OSU  |d ADU  |d CWR  |d UIU  |d AGLDB  |d AZK  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d MERUC  |d CUY  |d OCLCQ  |d OCLCO  |d DEGRU  |d VTS  |d ICG  |d OCLCQ  |d WYU  |d STF  |d LEAUB  |d DKC  |d U3W  |d OCLCQ  |d M8D  |d OCLCQ  |d U9X  |d AJS  |d OCLCQ  |d S2H  |d OCLCO  |d SNK  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 870892319  |a 874162451  |a 921226947  |a 961621352  |a 988489615  |a 991928521  |a 1087398551  |a 1264958232 
020 |a 9783110281903  |q (e-ISBN) 
020 |a 3110281902 
020 |z 3110281236  |q (hardcover) 
020 |z 9783110281231  |q (hardcover) 
020 |z 3110281910 
020 |z 9783110281910  |q (set-ISBN) 
020 |z 9781306429634 
020 |z 1306429633 
020 |a 3110281910 
020 |a 9783110281910 
024 3 |a 9783110281910 
029 1 |a AU@  |b 000052749461 
029 1 |a DEBBG  |b BV043035244 
029 1 |a DEBBG  |b BV044062513 
029 1 |a DEBSZ  |b 421220635 
029 1 |a DEBSZ  |b 431347360 
029 1 |a GBVCP  |b 813934087 
029 1 |a NZ1  |b 15907926 
035 |a (OCoLC)870589848  |z (OCoLC)870892319  |z (OCoLC)874162451  |z (OCoLC)921226947  |z (OCoLC)961621352  |z (OCoLC)988489615  |z (OCoLC)991928521  |z (OCoLC)1087398551  |z (OCoLC)1264958232 
037 |a 574214  |b MIL 
050 4 |a QA320 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.7222 
084 |a SK 600  |2 rvk 
049 |a UAMI 
100 1 |a Pavlovic, Miroslav,  |e author. 
245 1 0 |a Function Classes on the Unit Disc :  |b an Introduction. 
264 1 |a Berlin :  |b De Gruyter,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xiii, 449 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
588 0 |a Print version record. 
520 8 |a Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces. 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Preface /  |r Pavlović, Miroslav --  |t Contents --  |t 1. The Poisson integral and Hardy spaces --  |t 2. Subharmonic functions and Hardy spaces --  |t 3. Subharmonic behavior and mixed norm spaces --  |t 4. Taylor coefficients with applications --  |t 5. Besov spaces --  |t 6. The dual of H --  |t 7. Littlewood-Paley theory --  |t 8. Lipschitz spaces of first order --  |t 9. Lipschitz spaces of higher order --  |t 10. One-to-one mappings --  |t 11. Coefficients multipliers --  |t 12. Toward a theory of vector-valued spaces --  |t A. Quasi-Banach spaces --  |t B. Interpolation and maximal functions --  |t Bibliography --  |t Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Functional analysis. 
650 0 |a Function spaces. 
650 0 |a Banach spaces. 
650 0 |a Poisson integral formula. 
650 0 |a Hardy spaces. 
650 0 |a Lipschitz spaces. 
650 4 |a Banach spaces. 
650 4 |a Function spaces. 
650 4 |a Functional analysis. 
650 4 |a Hardy spaces. 
650 4 |a Lipschitz spaces. 
650 4 |a Poisson integral formula. 
650 4 |a Mathematik. 
650 6 |a Analyse fonctionnelle. 
650 6 |a Espaces fonctionnels. 
650 6 |a Espaces de Banach. 
650 6 |a Espaces de Hardy. 
650 6 |a Espaces de Lipschitz. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Function spaces  |2 fast 
650 7 |a Functional analysis  |2 fast 
650 7 |a Hardy spaces  |2 fast 
650 7 |a Lipschitz spaces  |2 fast 
650 7 |a Poisson integral formula  |2 fast 
650 7 |a Komplexe Funktion  |2 gnd 
650 7 |a Analytische Funktion  |2 gnd 
758 |i has work:  |a Function classes on the unit disc (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfM4rtC9bB7pbXyGT7TH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pavlovic, Miroslav.  |t Function Classes on the Unit Disc : An Introduction.  |d Berlin : De Gruyter, ©2013  |z 9783110281231 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1130360  |z Texto completo 
880 |6 520-00/(S  |a This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic. 
938 |a YBP Library Services  |b YANK  |n 10817664 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27540907 
938 |a EBSCOhost  |b EBSC  |n 699603 
938 |a ebrary  |b EBRY  |n ebr10838307 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1130360 
938 |a De Gruyter  |b DEGR  |n 9783110281903 
938 |a Coutts Information Services  |b COUT  |n 27540907 
994 |a 92  |b IZTAP