Cargando…

Data mining applications with R /

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many diff...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhao, Yanchang, 1977-
Otros Autores: Cen, Yonghua
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Academic Press, ©2014.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn870340096
003 OCoLC
005 20240329122006.0
006 m o d
007 cr unu||||||||
008 140212s2013 maua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d DEBBG  |d DEBSZ  |d EBLCP  |d OCLCA  |d OCLCQ  |d COCUF  |d K6U  |d CNNOR  |d CCO  |d Z5A  |d PIFAG  |d FVL  |d VGM  |d ZCU  |d LIV  |d MERUC  |d OCLCQ  |d U3W  |d D6H  |d UUM  |d STF  |d OCLCF  |d CEF  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 867926520 
020 |a 9780124115200 
020 |a 0124115209 
020 |a 012411511X 
020 |a 9780124115118 
020 |z 9780124115118 
029 1 |a AU@  |b 000053308418 
029 1 |a CHNEW  |b 000899585 
029 1 |a DEBBG  |b BV041783854 
029 1 |a DEBBG  |b BV044065284 
029 1 |a DEBSZ  |b 404335659 
029 1 |a DEBSZ  |b 431575681 
029 1 |a DEBSZ  |b 449401359 
029 1 |a GBVCP  |b 882725602 
029 1 |a NLGGC  |b 372667945 
035 |a (OCoLC)870340096  |z (OCoLC)867926520 
037 |a CL0500000382  |b Safari Books Online 
050 4 |a QA76.9.D343  |b Z526 2013 
082 0 4 |a 006.312 
049 |a UAMI 
100 1 |a Zhao, Yanchang,  |d 1977-  |1 https://id.oclc.org/worldcat/entity/E39PCjFDJ7qFJkWXvty3FwjKVC 
245 1 0 |a Data mining applications with R /  |c Yanchang Zhao, Yonghua Cen. 
260 |a Waltham, MA :  |b Academic Press,  |c ©2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Data Mining Applications with R; Copyright; Contents; Preface; Background; Objectives and Significance; Target Audience; Acknowledgments; Review Committee; Additional Reviewers; Foreword; References; Chapter 1: Power Grid Data Analysis with R and Hadoop; 1.1. Introduction; 1.2. A Brief Overview of the Power Grid; 1.3. Introduction to MapReduce, Hadoop, and RHIPE; 1.3.1. MapReduce; 1.3.1.1. An Example: The Iris Data; 1.3.2. Hadoop; 1.3.3. RHIPE: R with Hadoop; 1.3.3.1. Installation; 1.3.3.2. Iris MapReduce Example with RHIPE; 1.3.3.2.1. The Map Expression. 
505 8 |a 1.3.3.2.2. The Reduce Expression1.3.3.2.3. Running the Job; 1.3.3.2.4. Looking at Results; 1.3.4. Other Parallel R Packages; 1.4. Power Grid Analytical Approach; 1.4.1. Data Preparation; 1.4.2. Exploratory Analysis and Data Cleaning; 1.4.2.1. 5-min Summaries; 1.4.2.2. Quantile Plots of Frequency; 1.4.2.3. Tabulating Frequency by Flag; 1.4.2.4. Distribution of Repeated Values; 1.4.2.5. White Noise; 1.4.3. Event Extraction; 1.4.3.1. OOS Frequency Events; 1.4.3.2. Finding Generator Trip Features; 1.4.3.3. Creating Overlapping Frequency Data; 1.5. Discussion and Conclusions; Appendix; References. 
505 8 |a Chapter 2: Picturing Bayesian Classifiers: A Visual Data Mining Approach to Parameters Optimization2.1. Introduction; 2.2. Related Works; 2.3. Motivations and Requirements; 2.3.1. R Packages Requirements; 2.4. Probabilistic Framework of NB Classifiers; 2.4.1. Choosing the Model; 2.4.1.1. Multivariate Bernoulli model; 2.4.1.2. Multinomial Model; 2.4.1.3. Poisson Model; 2.4.2. Estimating the Parameters; 2.5. Two-Dimensional Visualization System; 2.5.1. Design Choices; 2.5.2. Visualization Design; 2.6. A Case Study: Text Classification; 2.6.1. Description of the Dataset. 
505 8 |a 2.6.2. Creating Document-Term Matrices2.6.3. Loading Existing Term-Document Matrices; 2.6.4. Running the Program; 2.6.4.1. Comparing Models; 2.7. Conclusions; Acknowledgments; References; Chapter 3: Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Ne ... ; 3.1. Introduction; 3.2. How Many Messages and How Many Twitter-Users in the Sample?; 3.3. Who Is Writing All These Twitter Messages?; 3.4. Who Are the Influential Twitter-Users in This Sample?; 3.5. What Is the Community Structure of These Twitter-Users? 
505 8 |a 3.6. What Were Twitter-Users Writing About During the Meeting?3.7. What Do the Twitter Messages Reveal About the Opinions of Their Authors?; 3.8. What Can Be Discovered in the Less Frequently Used Words in the Sample?; 3.9. What Are the Topics That Can Be Algorithmically Discovered in This Sample?; 3.10. Conclusion; References; Chapter 4: Text Mining and Network Analysis of Digital Libraries in R; 4.1. Introduction; 4.2. Dataset Preparation; 4.3. Manipulating the Document-Term Matrix; 4.3.1. The Document-Term Matrix; 4.3.2. Term Frequency-Inverse Document Frequency. 
520 |a Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. Twenty different real-world case studies illustrate various techniques in rapidly growing areas, including: RetailCrime and homeland securityStock mark. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data mining  |x Industrial applications  |v Case studies. 
650 0 |a R (Computer program language) 
650 6 |a Exploration de données (Informatique)  |x Applications industrielles  |v Études de cas. 
650 6 |a R (Langage de programmation) 
650 7 |a R (Computer program language)  |2 fast 
655 7 |a Case studies  |2 fast 
700 1 |a Cen, Yonghua. 
758 |i has work:  |a Data mining applications with R (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGqjcFjkdBVjDyykJ6wRDq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Zhao, Yanchang, 1977-  |t Data mining applications with R.  |d Amsterdam ; Boston : Academic Press, an imprint of Elsevier, 2013  |z 9780124115200  |w (OCoLC)867631062 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780124115118/?ar  |z Texto completo 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1574448  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1574448 
994 |a 92  |b IZTAP