Benchmark Priors Revisited.
Default prior choices fixing Zellner's g are predominant in the Bayesian Model Averaging literature, but tend to concentrate posterior mass on a tiny set of models. The paper demonstrates this supermodel effect and proposes to address it by a hyper-g prior, whose data-dependent shrinkage adapts...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Washington :
International Monetary Fund,
2009.
|
Colección: | IMF Working Papers.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Default prior choices fixing Zellner's g are predominant in the Bayesian Model Averaging literature, but tend to concentrate posterior mass on a tiny set of models. The paper demonstrates this supermodel effect and proposes to address it by a hyper-g prior, whose data-dependent shrinkage adapts posterior model distributions to data quality. Analytically, existing work on the hyper-g-prior is complemented by posterior expressions essential to fully Bayesian analysis and to sound numerical implementation. A simulation experiment illustrates the implications for posterior inference. Furthermore, |
---|---|
Descripción Física: | 1 online resource (60 pages) |
Bibliografía: | ReferencesFootnotes. |
ISBN: | 9781452769233 1452769230 |