Cargando…

Benchmark Priors Revisited.

Default prior choices fixing Zellner's g are predominant in the Bayesian Model Averaging literature, but tend to concentrate posterior mass on a tiny set of models. The paper demonstrates this supermodel effect and proposes to address it by a hyper-g prior, whose data-dependent shrinkage adapts...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Feldkircher, Martin
Otros Autores: Zeugner, Stefan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Washington : International Monetary Fund, 2009.
Colección:IMF Working Papers.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Default prior choices fixing Zellner's g are predominant in the Bayesian Model Averaging literature, but tend to concentrate posterior mass on a tiny set of models. The paper demonstrates this supermodel effect and proposes to address it by a hyper-g prior, whose data-dependent shrinkage adapts posterior model distributions to data quality. Analytically, existing work on the hyper-g-prior is complemented by posterior expressions essential to fully Bayesian analysis and to sound numerical implementation. A simulation experiment illustrates the implications for posterior inference. Furthermore,
Descripción Física:1 online resource (60 pages)
Bibliografía:ReferencesFootnotes.
ISBN:9781452769233
1452769230