Cargando…

Advanced energy materials /

The role of materials engineering is to provide the much needed support in the development of photovoltaic devices with the new and fundamental researches on novel energy materials with tailor-made photonic properties. Advanced Energy Materials has been designed to provide the state-of-the-art so th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tiwari, Ashutosh, 1978- (Editor ), Valyukh, Sergiy (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, [2014]
Colección:Advance materials series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1.1. Introduction / Kok-Keong Chong
  • 1.2. The Principle of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.2.1. Primary Tracking (Global Movement for Heliostat Frame) / Kok-Keong Chong
  • 1.2.2. Secondary Tracking (Local Movement for Slave Mirrors) / Kok-Keong Chong
  • 1.3. Residual Aberration / Kok-Keong Chong
  • 1.3.1. Methodology / Kok-Keong Chong
  • 1.3.2. Optical Analysis of Residual Aberration / Kok-Keong Chong
  • 1.4. Optimization of Flux Distribution Pattern for Wide Range of Incident Angle / Kok-Keong Chong
  • 1.5. First Prototype of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.5.1. Heliostat Structure / Kok-Keong Chong
  • 1.5.2. Heliostat Arm / Kok-Keong Chong
  • 1.5.3. Pedestal / Kok-Keong Chong
  • 1.5.4. Mirror and Unit Frame / Kok-Keong Chong
  • 1.5.5. Hardware and Software Control System / Kok-Keong Chong
  • 1.5.6. Optical Alignment of Prototype Heliostat / Kok-Keong Chong.
  • 1.5.7. High Temperature Solar Furnace System / Kok-Keong Chong
  • 1.6. Second Prototype of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.6.1. Introduction / Kok-Keong Chong
  • 1.6.2. Mechanical Design and Control System of Second Prototype / Kok-Keong Chong
  • 1.6.3. High Temperature Potato Skin Vaporization Experiment / Kok-Keong Chong
  • 1.7. Conclusion / Kok-Keong Chong
  • Acknowledgement / Kok-Keong Chong
  • References / Kok-Keong Chong
  • 2.1. Introduction / Suresh Sagadevan
  • 2.2. Motivations for Solar Energy / Suresh Sagadevan
  • 2.2.1. Importance of Solar Energy / Suresh Sagadevan
  • 2.2.2. Solar Energy and Its Economy / Suresh Sagadevan
  • 2.2.3. Technologies Based on Solar Energy / Suresh Sagadevan
  • 2.2.4. Photovoltaic Systems / Suresh Sagadevan
  • 2.3. Nanostructures and Different Synthesis Techniques / Suresh Sagadevan
  • 2.3.1. Classification of Nanomaterials / Suresh Sagadevan.
  • 2.3.2. Synthesis and Processing of Nanomaterials / Suresh Sagadevan
  • 2.4. Nanomaterials for Solar Cells Applications / Suresh Sagadevan
  • 2.4.1. CdTe, CdSe and CdS Thin-Film PV Devices / Suresh Sagadevan
  • 2.4.2. Nanoparticles/Quantum Dot Solar Cells and PV Devices / Suresh Sagadevan
  • 2.4.3. Iron Disulfide Pyrite, CuInS2 and Cu2ZnSnS4 / Suresh Sagadevan
  • 2.4.4.Organic Solar Cells and Nanowire Solar Cells / Suresh Sagadevan
  • 2.4.5. Polycrystalline Thin-Film Solar Cells / Suresh Sagadevan
  • 2.5. Advanced Nanostruutures for Technological Applications / Suresh Sagadevan
  • 2.5.1. Nanocones Used as Inexpensive Solar Cells / Suresh Sagadevan
  • 2.5.2. Core/Shell Nanoparticles towards PV Applications / Suresh Sagadevan
  • 2.5.3. Silicon PV Devices / Suresh Sagadevan
  • 2.5.4. III-V Semiconductors / Suresh Sagadevan
  • 2.6. Theory and Future Trends in Solar Cells / Suresh Sagadevan
  • 2.6.1. Theoretical Formulation of the Solar Cell / Suresh Sagadevan.
  • 2.6.2. The Third Generation Solar Cells / Suresh Sagadevan
  • 2.7. Conclusion / Suresh Sagadevan
  • References / Suresh Sagadevan
  • 3.1. Introduction / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.2. Metal Oxide Nanostructures for Photovoltaic Applications / Hyung-Kee Seo / M. Shaheer Akhtar / Sadia Ameen / Hyung Shik Shin
  • 3.3. TiO2Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.1. Fabrication of DSSCs with TiO2Nanorods (NRs) Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.2. Fabrication of DSSCs with TiO2Nanocomposite Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.3. TiO2 Nanocomposite for the Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar.
  • 3.4. ZnO Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.1. Fabrication of DSSCs with ZnO Nanotubes (NTs) Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.2. Fabrication of DSSCs with Nanospikes Decorated ZnO Sheets Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.3. Fabrication of DSSCs with ZnO Nanorods (NRs) and Nanoballs (NBs) Nanomaterial Based Photoanode / Sadia Ameen / M. Shaheer Akhtar / Hyung-Kee Seo / Hyung Shik Shin
  • 3.4.4. Fabrication of DSSCs with Spindle Shaped Sn-Doped ZnO Nanostructures Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar.
  • 3.4.5. Fabrication of DSSCs with Vertically Aligned ZnO Nanorods (NRs) and Graphene Oxide Nanocomposite Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.6. ZnO Nanocomposit for the Heterostructures Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.7. Fabrication of Heterostructure Device with Doped ZnO Nanocomposite / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8. Metal Oxide Nanostructures and Nanocomposites for Photocatalytic Application / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.1. ZnO Flower Nanostructures for Photocatalytic Degradation of Crystal Violet (Cv)Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.2. Advanced ZnO-Graphene Oxide Nanohybrid for the Photocatalytic Degradation of Crystal Violet (Cv)Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar.
  • 3.8.3. Effective Nanocomposite of Polyaniline (PANT) and ZnO for the Photocatalytic Degradation of Methylene Blue (MB) Dye / Hyung-Kee Seo / M. Shaheer Akhtar / Sadia Ameen / Hyung Shik Shin
  • 3.8.4. Novel Poly(1-naphthylamine)/Zinc Oxide Nanocomposite for the Photocatalytic-Degradation of Methylene Blue (MB) Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.5. Nanocomposites of Poly(1-naphthylamine)/SiO2 and Poly(1-Naphthylamine)/TiO2 for the Photocatalytic Degradation of Methylene Blue (MB) Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.9. Conclusions / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.10. Future Directions / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • References / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 4.1. Introduction / Archana Chandra / Angesh Chandra.
  • 4.2. Classification of Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.3. Ion Conduction in Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4. Important Models / Archana Chandra / Angesh Chandra
  • 4.4.1. Models for Crystalline/Polycrystalline Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.2. Models for Glassy Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.3. Models for Composite Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.4. Models for Polymeric Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.5. Applications / Archana Chandra / Angesh Chandra
  • 4.5.1. Solid-State Batteries / Archana Chandra / Angesh Chandra
  • 4.5.2. Fuel Cells / Archana Chandra / Angesh Chandra
  • 4.5.3. Super Capacitors / Archana Chandra / Angesh Chandra
  • 4.6. Conclusion / Archana Chandra / Angesh Chandra
  • References / Archana Chandra / Angesh Chandra
  • 5.1. Introduction / Michael R. Kessler / Vijay Kumar Thakur.
  • 5.2. Dielectric Mechanism / Michael R. Kessler / Vijay Kumar Thakur
  • 5.2.1. Dielectric Permittivity, Loss and Breakdown / Michael R. Kessler / Vijay Kumar Thakur
  • 5.2.2. Polarization / Michael R. Kessler / Vijay Kumar Thakur
  • 5.3. Dielectric Materials / Michael R. Kessler / Vijay Kumar Thakur
  • 5.4. Demand for New Materials: Polymer Composites / Michael R. Kessler / Vijay Kumar Thakur
  • 5.5. Polymer Nanocomposites: Concept and Electrical Properties / Michael R. Kessler / Vijay Kumar Thakur
  • 5.5.1. Polymer Nanocomposites for Dielectric Applications / Michael R. Kessler / Vijay Kumar Thakur
  • 5.6. Conclusion and Future Perspectives / Michael R. Kessler / Vijay Kumar Thakur
  • References / Vijay Kumar Thakur / Michael R. Kessler
  • 6.1. Introduction / S.W. Anwane
  • 6.2. Ionic Solids / S.W. Anwane
  • 6.2.1. Bonds in Ionic Solids / S.W. Anwane
  • 6.2.2. Structure of Ionic Solids / S.W. Anwane
  • 6.3. Classification of Solid Electrolytes / S.W. Anwane.
  • 6.4. Criteria for High Ionic Conductivity and Mobility / S.W. Anwane
  • 6.5. Electrical Characterization of Solid Electrolyte / S.W. Anwane
  • 6.5.1. DC Polarization / S.W. Anwane
  • 6.5.2. Impedance Spectroscopy / S.W. Anwane
  • 6.6. Ionic Conductivity and Temperature / S.W. Anwane
  • 6.7. Concentration-Dependent Conductivity / S.W. Anwane
  • 6.8. Ionic Conductivity in Composite SE / S.W. Anwane
  • 6.9. Thermodynamics of Electrochemical System / S.W. Anwane
  • 6.10. Applications / S.W. Anwane
  • 6.10.1. Solid-State Batteries / S.W. Anwane
  • 6.10.2. Sensors / S.W. Anwane
  • 6.10.3. SO2 Sensor Kinetics and Thermodynamics / S.W. Anwane
  • 6.12. Conclusion / S.W. Anwane
  • References / S.W. Anwane
  • 7.1. Introduction / Surender Duhan / Vijay Tomer
  • 7.1.1. Silicon Era / Surender Duhan / Vijay Tomer
  • 7.1.2. Moore's Law / Surender Duhan / Vijay Tomer
  • 7.2. Limitations of Silicon-Based Technology / Surender Duhan / Vijay Tomer.
  • 7.2.1. Speed, Density and Design Complexity / Surender Duhan / Vijay Tomer
  • 7.2.2. Power Consumption and Heat Dissipation / Surender Duhan / Vijay Tomer
  • 7.2.3. Cost Concern / Surender Duhan / Vijay Tomer
  • 7.3. Need for Carbon-Based Electronics Technology / Surender Duhan / Vijay Tomer
  • 7.4. Carbon Family / Surender Duhan / Vijay Tomer
  • 7.4.1. Carbon Nanotube / Surender Duhan / Vijay Tomer
  • 7.4.2. Graphene / Surender Duhan / Vijay Tomer
  • 7.5. Electronic Structure of Graphene and CNT / Surender Duhan / Vijay Tomer
  • 7.6. Synthesis of CNTs / Surender Duhan / Vijay Tomer
  • 7.6.1. Arc Discharge Method / Surender Duhan / Vijay Tomer
  • 7.6.2. Pyrolysis of Hydrocarbons / Surender Duhan / Vijay Tomer
  • 7.6.3. Laser Vaporization / Surender Duhan / Vijay Tomer
  • 7.6.4. Electrolysis / Surender Duhan / Vijay Tomer
  • 7.6.5. Solar Vaporization / Vijay Tomer / Surender Duhan
  • 7.7. Carbon Nanotube Devices / Surender Duhan / Vijay Tomer.
  • 7.7.1. Nanotube-Based FET Transistors CNTFET / Surender Duhan / Vijay Tomer
  • 7.7.2. CNT Interconnect / Surender Duhan / Vijay Tomer
  • 7.7.3. Carbon Nanotube Sensor of Polar Molecules / Surender Duhan / Vijay Tomer
  • 7.7.4. Carbon Nanotube Crossbar Arrays for Random Access Memory / Surender Duhan / Vijay Tomer
  • 7.8. Advantages of CNT Based Devices / Surender Duhan / Vijay Tomer
  • 7.8.1. Ballistic Transport / Surender Duhan / Vijay Tomer
  • 7.8.2. Flexible Device / Surender Duhan / Vijay Tomer
  • 7.8.3. Low Power Dissipation / Surender Duhan / Vijay Tomer
  • 7.8.4. Low Cost / Surender Duhan / Vijay Tomer
  • 7.9. Issues with Carbon-Based Electronics / Surender Duhan / Vijay Tomer
  • 7.10. Conclusion / Surender Duhan / Vijay Tomer
  • References / Surender Duhan / Vijay Tomer
  • 8.1. Introduction / Pooja B and G. Sharma
  • 8.2.Computational Details / Pooja B and G. Sharma
  • 8.3. Results and Discussion / Pooja B and G. Sharma.
  • 8.3.1. Phase Transition and Structural Parameters / Pooja B and G. Sharma
  • 8.3.2. Pressure Dependent Electronic Properties / Pooja B and G. Sharma
  • 8.3.3. Pressure-Dependent Dielectric Constant / Pooja B and G. Sharma
  • 8.4. Conclusions / Pooja B and G. Sharma
  • Acknowledgements / Pooja B and G. Sharma
  • References / Pooja B and G. Sharma
  • 9.1. Introduction / Jihyun Kim / Lu Liu / Fan Ren / Alexander Y. Polyakov / Richard Deist / S.J. Pearton
  • 9.2. Fundamental Studies of Radiation Defects in GaN and Related Materials / Fan Ren / Lu Liu / Jihyun Kim / Richard Deist / S.J. Pearton / Alexander Y. Polyakov
  • 9.2.1. Threshold Displacement Energy: Theory and Experiment / S.J. Pearton / Richard Deist / Alexander Y. Polyakov / Fan Ren / Lu Liu / Jihyun Kim.
  • 9.2.2. Radiation Defects in GaN: Defects Levels, Effects on Charge Carriers Concentration, Mobility, Lifetime of Charge Carriers, Thermal Stability of Defects / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.3. Radiation Effects in Other III-Nitrides / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.4. Radiation Effects in GaN Schottky Diodes, in AlGaN/GaN and GaN/InGaN Heterojunctions and Quantum Wells / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.5. Radiation Effects in GaN-Based Devices / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.6. Prospects of Radiation Technology for GaN / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.7. Summary and Conclusions / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov.
  • Acknowledgments / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • References / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 10.1. Introduction / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.1.1. Molecular Packing in Liquid Crystalline Phases / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.2. Theories of Antiferroelectricity in Liquid Crystals / Roman Dabrowski / Manoj Bhushan Pandey / Ravindra Dhar
  • 10.3. Molecular Structure Design/Synthesis of AFLC Materials / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4. Macroscopic Characterization and Physical Properties of AFLCs / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4.1. Experimental Techniques / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4.2. Dielectric Parameters of AFLCs / Manoj Bhushan Pandey / Roman Dabrowski / Ravindra Dhar.
  • 10.4.3. Switching and Electro-Optic Parameters / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.5. Conclusion and Future Scope / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • Acknowledgements / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • References / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 11.1. Introduction / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.1.1. What is Fuel Cell? / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.2. PEEK Overview / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.2.1. Applications of PEEK / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath.
  • 11.2.2. Why PEEK is Used as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.3. PEEK as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.4. Modified PEEK as Fuel Cell Membrane / Nibedita Nath / Anita Routaray / Alekha Kumar Sutar / Bikash Mohanty / Tungabidya Maharana / Yuvraj Singh Negi
  • 11.4.1. Sulphonated PEEK as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.5. Evaluation of Cell Performance / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.6. Market Size / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath.
  • 11.7. Conclusion and Future Prospects / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • Acknowledgement / Tungabidya Maharana / Alekha Kumar Sutar / Nibedita Nath / Anita Routaray / Yuvraj Singh Negi / Bikash Mohanty
  • References / Alekha Kumar Sutar / Tungabidya Maharana / Nibedita Nath / Anita Routaray / Yuvraj Singh Negi / Bikash Mohanty
  • 12.1. Introduction / Roshani Singh / K.N. Shinde
  • 12.2. Some Well-Known Vanadate Phosphors / K.N. Shinde / Roshani Singh
  • 12.3. Our Approach / K.N. Shinde / Roshani Singh
  • 12.4. Experimental Details / Roshani Singh / K.N. Shinde
  • 12.5. Results and Discussion of M3-3x/2(VO4)2:xEu(0.01 <or = x <or = 0.09 for M = Ca and 0 <or = x <or = 0.3 for M = Sr, Ba) Phosphors / Roshani Singh / K.N. Shinde
  • 12.5.1.X-ray Diffraction Pattern of M3-3x/2(VO4)2:xEu Phosphor / K.N. Shinde / Roshani Singh.
  • 12.5.2. Surface Morphology of M3-3x/2(VO4)2:xEu Phosphor / Roshani Singh / K.N. Shinde
  • 12.5.3. Photoluminescence Properties of M3-3x/2(VO4)2:xEu Phosphor / Roshani Singh / K.N. Shinde
  • 12.6. Effect of Annealing Temperature on M3-3x/2(VO4)2:xEu (x = 0.05 for M = Ca, x = 0.1 for M = Sr and x = 0.3 for M = Ba) Phosphors / Roshani Singh / K.N. Shinde
  • 12.6.1.X-ray Diffraction Pattern of M3-3x/2(VO4)2:xEu phosphor / Roshani Singh / K.N. Shinde
  • 12.6.2. Surface Morphology of M3-3x/2(VO4)2:xEu phosphor / K.N. Shinde / Roshani Singh
  • 12.6.3. Photoluminescence Properties of M3-3x/2(VO4)2:xEu phosphor / K.N. Shinde / Roshani Singh
  • 12.7. Conclusions / K.N. Shinde / Roshani Singh
  • References / Roshani Singh / K.N. Shinde
  • 13.1. Introduction / Prakash Chandra Mondal
  • 13.2. Molecular Logic Gate on 3D Substrates / Prakash Chandra Mondal
  • 13.3. Molecular Logic Gates and Circuits on 2D Substrates / Prakash Chandra Mondal.
  • 13.3.1. Monolayer-Based System / Prakash Chandra Mondal
  • 13.4.Combinatorial and Sequential Logic Gates and Circuits using Os-polypyridyl Complex on SiOx Substrates / Prakash Chandra Mondal
  • 13.5. Multiple Redox States and Logic Devices / Prakash Chandra Mondal
  • 13.6. Concluding Remarks / Prakash Chandra Mondal
  • Acknowledgements / Prakash Chandra Mondal
  • References / Prakash Chandra Mondal
  • 14.1. Introduction / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.2. Applications of Metal Nanoparticles / Kamlesh Kumari / Gopal K. Mehrotra / Prashant Singh
  • 14.3. Shape of Particles / Prashant Singh / Gopal K. Mehrotra / Kamlesh Kumari
  • 14.4. Aggregation of Particles / Prashant Singh / Kamlesh Kumari / Gopal K. Mehrotra
  • 14.5. Synthesis of Metal Nanoparticles / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.6. Stability against Oxidation / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra.
  • 14.7. Stabilization of Metal Nanoparticles in Ionic Liquid / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.8. Applications of Metal NPs as Potent Catalyst in Organic Synthesis / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.8. Conclusion / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • References / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 15.1. Introduction / Parthiv M. Trivedi / C.K. Modi
  • 15.2. Types of Zeolites / Parthiv M. Trivedi / C.K. Modi
  • 15.3. Methodology / Parthiv M. Trivedi / C.K. Modi
  • 15.4. Characterization Techniques / C.K. Modi / Parthiv M. Trivedi
  • 15.5. Exploration of Zeolite-Y Enslaved Nanohybrid Materials / C.K. Modi / Parthiv M. Trivedi
  • 15.5.1. Catalytic Liquid-Phase Hydroxylation of Phenol / C.K. Modi / Parthiv M. Trivedi
  • 15.5.2. Catalytic Liquid-Phase Oxidation of Cyclohexane / C.K. Modi / Parthiv M. Trivedi
  • 15.6. Conclusions / Parthiv M. Trivedi / C.K. Modi
  • References / Parthiv M. Trivedi / C.K. Modi.