Cargando…

NOTES ON FORCING AXIOMS.

In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedne...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: STEVO, TODORCEVIC
Formato: Electrónico eBook
Idioma:Inglés
Publicado: WSPC, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn869522979
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 140131s2013 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d MHW  |d DEBSZ  |d AZU  |d MEAUC  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 1306396573  |q (ebk) 
020 |a 9781306396578  |q (ebk) 
020 |a 9789814571586 
020 |a 981457158X 
029 1 |a AU@  |b 000058200284 
029 1 |a DEBBG  |b BV044066575 
029 1 |a DEBSZ  |b 400970554 
029 1 |a DEBSZ  |b 454909128 
035 |a (OCoLC)869522979 
037 |a 570908  |b MIL 
050 4 |a QA9.7  |b .T63 2014eb 
082 0 4 |a 511.3 
049 |a UAMI 
100 1 |a STEVO, TODORCEVIC. 
245 1 0 |a NOTES ON FORCING AXIOMS. 
260 |b WSPC,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions. 
505 0 |a Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method -- a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces. 
505 8 |a 7.2 Open graph axiom8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Forcing (Model theory) 
650 0 |a Axioms. 
650 0 |a Baire classes. 
650 6 |a Forcing (Théorie des modèles) 
650 6 |a Axiomes. 
650 6 |a Classes de Baire. 
650 7 |a Axioms  |2 fast 
650 7 |a Baire classes  |2 fast 
650 7 |a Forcing (Model theory)  |2 fast 
758 |i has work:  |a Notes on forcing axioms (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFJRydfmbwVTWjc8fK8dXq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781306396578 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1611985  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1611985 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27396242 
994 |a 92  |b IZTAP