Biological data mining and its applications in healthcare /
Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to di...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Jersey :
World Scientific,
2013.
|
Colección: | Science, engineering, and biology informatics ;
v. 8. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Part I: Sequence Analysis
- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets
- 1. Introduction
- 2. Remote homology driven approaches for protein function annotation
- 2.1. Sequence-based approaches for remote homology detection
- 2.1.1. Iterated searches using PSI-BLAST
- 2.1.2. Multi-profiles approach to improve sensitivity
- 2.1.3. Cascade PSI-BLAST
- 2.1.4. Hidden Markov Models
- 2.1.5. Profile-profile matching algorithms
- 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study
- 3.1. Overview on structural and functional domain assignments in T. brucei proteome
- 3.2. Fold assignments
- 3.3. Metabolic proteins in Trypanosoma brucei
- 3.3.1. Domain composition of metabolic proteins
- 3.3.2. Predicting drug targets based on remote homology approaches
- 4. Conclusions
- Acknowledgments
- References
- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence
- 1. Introduction
- 2. Gene prediction methods2.1. Background
- 2.2. Exon prediction based on the AR model and multifeature spectral analysis
- 3. Regulatory region (promoter) prediction methods
- 3.1. Background
- 3.2. Cascade AdaBoost algorithm
- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties
- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine
- 3.5. Computational identification of disease-related genes and regulatory regions
- 4. Summary
- Acknowledgement
- References
- Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction
- 1.1. Biological sequence
- 1.2. Homology and similarity
- 1.3. Sequence alignment
- 2. Statistical significance
- 2.1. Why statistical significance?
- 2.2. P-value in statistical significance
- 2.3. Modeling statistical for local sequence alignment
- 2.3.1. Coin-Toss model
- 2.3.2. Assessing the statistical significance using alignment scores
- 2.4. Gumbel extreme value distribution
- 3. Pairwise statistical significance
- 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance
- 3.3. Evaluation of pairwise statistical significance
- 4. HPC solutions for accelerating pairwise statistical significance estimation
- 4.1. Parallel paradigms of HPC techniques
- 4.2. Implementations
- 4.3. Summary
- Acknowledgement
- References
- Part II: Biological Network Mining
- Indexing for Similarity Queries on Biological Networks
- 1. Introduction
- 2. Preliminaries
- 2.1. Definitions
- 2.2. Problem Formulation