Cargando…

Biological data mining and its applications in healthcare /

Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to di...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Li, Xiao-Li, 1969- (Editor ), Ng, See-Kiong (Editor ), Wang, Jason T. L. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, 2013.
Colección:Science, engineering, and biology informatics ; v. 8.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn869281569
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140128s2013 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d CDX  |d YDXCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d YDX  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d OCLCO  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCO  |d JBG  |d OCLCO  |d OCLCQ  |d M8D  |d OCLCQ  |d OCLCA  |d AJS  |d OCLCQ  |d OCLCO  |d SGP  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922951932  |a 957953897 
020 |a 9789814551014  |q (electronic bk.) 
020 |a 9814551015  |q (electronic bk.) 
020 |z 9789814551007 
020 |z 9814551007 
029 1 |a AU@  |b 000058361188 
029 1 |a DEBBG  |b BV043038664 
029 1 |a DEBBG  |b BV044053958 
029 1 |a DEBSZ  |b 42458347X 
029 1 |a GBVCP  |b 805122680 
035 |a (OCoLC)869281569  |z (OCoLC)922951932  |z (OCoLC)957953897 
050 4 |a R859.7.D35  |b B56 2013eb 
060 4 |a 2014 D-526 
060 4 |a QU 26.5 
072 7 |a HEA  |x 012000  |2 bisacsh 
072 7 |a HEA  |x 020000  |2 bisacsh 
072 7 |a MED  |x 004000  |2 bisacsh 
072 7 |a MED  |x 101000  |2 bisacsh 
072 7 |a MED  |x 109000  |2 bisacsh 
072 7 |a MED  |x 029000  |2 bisacsh 
072 7 |a MED  |x 040000  |2 bisacsh 
072 7 |a MED  |x 092000  |2 bisacsh 
082 0 4 |a 610.285  |2 23 
049 |a UAMI 
245 0 0 |a Biological data mining and its applications in healthcare /  |c [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). 
264 1 |a New Jersey :  |b World Scientific,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Science, engineering, and biology informatics ;  |v volume 8 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms 
505 8 |a 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction 
505 8 |a 2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References 
505 8 |a Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance 
505 8 |a 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation 
520 |a Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Medical informatics. 
650 0 |a Bioinformatics. 
650 0 |a Data mining. 
650 0 |a Natural language processing (Computer science) 
650 1 2 |a Computational Biology  |x methods 
650 2 2 |a Data Mining  |x methods 
650 2 2 |a Genomics  |x methods 
650 2 2 |a Natural Language Processing 
650 2 2 |a Imaging, Three-Dimensional  |x methods 
650 2 |a Computational Biology 
650 2 |a Data Mining 
650 6 |a Médecine  |x Informatique. 
650 6 |a Bio-informatique. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Traitement automatique des langues naturelles. 
650 7 |a HEALTH & FITNESS  |x Holism.  |2 bisacsh 
650 7 |a HEALTH & FITNESS  |x Reference.  |2 bisacsh 
650 7 |a MEDICAL  |x Alternative Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Atlases.  |2 bisacsh 
650 7 |a MEDICAL  |x Essays.  |2 bisacsh 
650 7 |a MEDICAL  |x Family & General Practice.  |2 bisacsh 
650 7 |a MEDICAL  |x Holistic Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Osteopathy.  |2 bisacsh 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Medical informatics  |2 fast 
700 1 |a Li, Xiao-Li,  |d 1969-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjHmXKCFJJh8xWh4pHdwQ3 
700 1 |a Ng, See-Kiong,  |e editor. 
700 1 |a Wang, Jason T. L.,  |e editor. 
758 |i has work:  |a Biological data mining and its applications in healthcare (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGwmTX4wfQpfQtbGWfPgBq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Biological data mining and its applications in healthcare  |z 9789814551007  |w (DLC) 2013037382  |w (OCoLC)855583066 
830 0 |a Science, engineering, and biology informatics ;  |v v. 8. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3051317  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 27394974 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3051317 
938 |a EBSCOhost  |b EBSC  |n 689749 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27394974 
938 |a YBP Library Services  |b YANK  |n 11593483 
994 |a 92  |b IZTAP