Cargando…

Propagation dynamics on complex networks : models, methods and stability analysis /

"Providing an introduction of general epidemic models, Propagation Dynamics on Complex Networks explores emerging topics of epidemic dynamics on complex networks, including theories, methods, and real-world applications with elementary and wide-coverage. This valuable text for researchers and s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fu, Xinchu
Otros Autores: Small, Michael (Professor), Chen, G. (Guanrong)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : Wiley, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn868925574
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 130814s2014 enk ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d N$T  |d DG1  |d YDXCP  |d OHS  |d OCLCO  |d OCLCF  |d AU@  |d COO  |d OCLCO  |d OCLCQ  |d OCLCO  |d DEBBG  |d IDEBK  |d EBLCP  |d SFB  |d DEBSZ  |d COCUF  |d DG1  |d CHVBK  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d STF  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCO  |d OCLCQ  |d WYU  |d YOU  |d TKN  |d OCLCO  |d OCLCQ  |d OCLCO  |d DKC  |d OCLCQ  |d UKAHL  |d UX1  |d OL$  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCA  |d VLY  |d TUHNV  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 866840236  |a 876159075  |a 961657828  |a 962639860  |a 992823363  |a 1055398502  |a 1162011972  |a 1228602448  |a 1244443107  |a 1249233111 
020 |a 9781118762806  |q (electronic bk.) 
020 |a 1118762800  |q (electronic bk.) 
020 |a 9781118762783  |q (electronic bk.) 
020 |a 1118762789  |q (electronic bk.) 
020 |a 1118534506 
020 |a 9781118534502 
020 |a 130625468X 
020 |a 9781306254687 
020 |a 1118762819 
020 |a 9781118762813 
020 |z 9781118534502 
024 8 |a 40023455039 
029 1 |a AU@  |b 000052741070 
029 1 |a CHNEW  |b 000942733 
029 1 |a CHVBK  |b 480230277 
029 1 |a DEBBG  |b BV042793849 
029 1 |a DEBBG  |b BV043396486 
029 1 |a DEBBG  |b BV044065750 
029 1 |a DEBSZ  |b 431590907 
029 1 |a DEBSZ  |b 449405753 
029 1 |a DEBSZ  |b 485045214 
029 1 |a NZ1  |b 15495709 
029 1 |a NZ1  |b 15906616 
029 1 |a NZ1  |b 16092129 
035 |a (OCoLC)868925574  |z (OCoLC)866840236  |z (OCoLC)876159075  |z (OCoLC)961657828  |z (OCoLC)962639860  |z (OCoLC)992823363  |z (OCoLC)1055398502  |z (OCoLC)1162011972  |z (OCoLC)1228602448  |z (OCoLC)1244443107  |z (OCoLC)1249233111 
037 |a 556719  |b MIL 
050 4 |a RA652.2.M3  |b F8 2014eb 
060 4 |a 2014 E-541 
060 4 |a WA 950 
072 7 |a MED  |x 030000  |2 bisacsh 
072 7 |a MED  |x 076000  |2 bisacsh 
072 7 |a MED  |x 078000  |2 bisacsh 
082 0 4 |a 614.401/5118  |2 23 
049 |a UAMI 
100 1 |a Fu, Xinchu. 
245 1 0 |a Propagation dynamics on complex networks :  |b models, methods and stability analysis /  |c Xinchu Fu, Michael Small, Guanrong Chen. 
264 1 |a Chichester, West Sussex :  |b Wiley,  |c 2014. 
300 |a 1 online resource (330 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed January 15, 2013). 
520 |a "Providing an introduction of general epidemic models, Propagation Dynamics on Complex Networks explores emerging topics of epidemic dynamics on complex networks, including theories, methods, and real-world applications with elementary and wide-coverage. This valuable text for researchers and students explores models evolving over complex networks and presents results concerning dynamics of Network-based models on a macroscopic scale. The text presents the fundamental knowledge needed to demonstrate how epidemic dynamical networks can be modeled, analyzed, and controlled along the state-of-the-art and recent progress in the field and related issues arising from various epidemic systems"--  |c Provided by publisher 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Summary; Chapter 1 Introduction; 1.1 Motivation and background; 1.2 A brief history of mathematical epidemiology; 1.2.1 Compartmental modeling; 1.2.2 Epidemic modeling on complex networks; 1.3 Organization of the book; References; Chapter 2 Various epidemic models on complex networks; 2.1 Multiple stage models; 2.1.1 Multiple susceptible individuals; 2.1.2 Multiple infected individuals; 2.1.3 Multiple-staged infected individuals; 2.2 Staged progression models; 2.2.1 Simple-staged progression model. 
505 8 |a 2.2.2 Staged progression model on homogenous networks2.2.3 Staged progression model on heterogenous networks; 2.2.4 Staged progression model with birth and death; 2.2.5 Staged progression model with birth and death on homogenous networks; 2.2.6 Staged progression model with birth and death on heterogenous networks; 2.3 Stochastic SIS model; 2.3.1 A general concept: Epidemic spreading efficiency; 2.4 Models with population mobility; 2.4.1 Epidemic spreading without mobility of individuals; 2.4.2 Spreading of epidemic diseases among different cities. 
505 8 |a 2.4.3 Epidemic spreading within and between cities2.5 Models in meta-populations; 2.5.1 Model formulation; 2.6 Models with effective contacts; 2.6.1 Epidemics with effectively uniform contact; 2.6.2 Epidemics with effective contact in homogenous and heterogenous networks; 2.7 Models with two distinct routes; 2.8 Models with competing strains; 2.8.1 SIS model with competing strains; 2.8.2 Remarks and discussions; 2.9 Models with competing strains and saturated infectivity; 2.9.1 SIS model with mutation mechanism; 2.9.2 SIS model with super-infection mechanism. 
505 8 |a 2.10 Models with birth and death of nodes and links2.11 Models on weighted networks; 2.11.1 Model with birth and death and adaptive weights; 2.12 Models on directed networks; 2.13 Models on colored networks; 2.13.1 SIS epidemic models on colored networks; 2.13.2 Microscopic Markov-chain analysis; 2.14 Discrete epidemic models; 2.14.1 Discrete SIS model with nonlinear contagion scheme; 2.14.2 Discrete-time epidemic model in heterogenous networks; 2.14.3 A generalized model; References; Chapter 3 Epidemic threshold analysis; 3.1 Threshold analysis by the direct method. 
505 8 |a 3.1.1 The epidemic rate is B/ni inside the same cities3.1.2 Epidemics on homogenous networks; 3.1.3 Epidemics on heterogenous networks; 3.2 Epidemic spreading efficiency threshold and epidemic threshold; 3.2.1 The case of 1 ≠ 2; 3.2.2 The case of 1 = 2; 3.2.3 Epidemic threshold in finite populations; 3.2.4 Epidemic threshold in infinite populations; 3.3 Epidemic thresholds and basic reproduction numbers; 3.3.1 Threshold from a self-consistency equation; 3.3.2 Threshold unobtainable from a self-consistency equation; 3.3.3 Threshold analysis for SIS model with mutation. 
505 0 0 |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Motivation and background --  |g 1.2.  |t brief history of mathematical epidemiology --  |g 1.2.1.  |t Compartmental modeling --  |g 1.2.2.  |t Epidemic modeling on complex networks --  |g 1.3.  |t Organization of the book --  |t References --  |g 2.  |t Various epidemic models on complex networks --  |g 2.1.  |t Multiple stage models --  |g 2.1.1.  |t Multiple susceptible individuals --  |g 2.1.2.  |t Multiple infected individuals --  |g 2.1.3.  |t Multiple-staged infected individuals --  |g 2.2.  |t Staged progression models --  |g 2.2.1.  |t Simple-staged progression model --  |g 2.2.2.  |t Staged progression model on homogenous, networks --  |g 2.2.3.  |t Staged progression model on heterogenous networks --  |g 2.2.4.  |t Staged progression model with birth and death --  |g 2.2.5.  |t Staged progression model, with birth and death on homogenous networks --  |g 2.2.6.  |t Staged progression model with birth and death on heterogenous networks --  |g 2.3.  |t Stochastic SIS model --  |g 2.3.1.  |t general concept: Epidemic spreading efficiency --  |g 2.4.  |t Models with population mobility --  |g 2.4.1.  |t Epidemic spreading without mobility of individuals --  |g 2.4.2.  |t Spreading of epidemic diseases among different cities --  |g 2.4.3.  |t Epidemic spreading within and between cities --  |g 2.5.  |t Models in meta-populations --  |g 2.5.1.  |t Model formulation --  |g 2.6.  |t Models with effective contacts --  |g 2.6.1.  |t Epidemics with effectively uniform contact --  |g 2.6.2.  |t Epidemics with effective contact in homogenous and heterogenous networks --  |g 2.7.  |t Models with two distinct routes --  |g 2.8.  |t Models with competing strains --  |g 2.8.1.  |t SIS model with competing strains --  |g 2.8.2.  |t Remarks and discussions --  |g 2.9.  |t Models with competing strains and saturated infectivity --  |g 2.9.1.  |t SIS model with mutation mechanism --  |g 2.9.2.  |t SIS model with super-infection mechanism --  |g 2.10.  |t Models with birth and death of nodes and links --  |g 2.11.  |t Models on weighted networks --  |g 2.11.1.  |t Model with birth and death and adaptive weights --  |g 2.12.  |t Models on directed networks --  |g 2.13.  |t Models on colored networks --  |g 2.13.1.  |t SIS epidemic models on colored networks --  |g 2.13.2.  |t Microscopic Markov-chain analysis --  |g 2.14.  |t Discrete epidemic models --  |g 2.14.1.  |t Discrete SIS model with nonlinear contagion scheme --  |g 2.14.2.  |t Discrete-time epidemic model in heterogenous networks --  |g 2.14.3.  |t generalized model --  |t References --  |g 3.  |t Epidemic threshold analysis --  |g 3.1.  |t Threshold analysis by the direct method --  |g 3.1.1.  |t epidemic rate is ?/ni inside the same cities --  |g 3.1.2.  |t Epidemics on homogenous networks --  |g 3.1.3.  |t Epidemics on heterogenous network's --  |g 3.2.  |t Epidemic spreading efficiency threshold and epidemic threshold --  |g 3.2.1.  |t case of ?1 [≠] lambda;2 --  |g 3.2.2.  |t case of ?1 = ?2 --  |g 3.2.3.  |t Epidemic threshold in finite populations --  |g 3.2.4.  |t Epidemic thresholdin in finite populations --  |g 3.3.  |t Epidemic thresholds and basic reproduction numbers --  |g 3.3.1.  |t Threshold from a self-consistency equation --  |g 3.3.2.  |t Threshold unobtainable from a self-consistency equation --  |g 3.3.3.  |t Threshold analysis for SIS model with mutation --  |g 3.3.4.  |t Threshold analysis for SIS model with super-infection --  |g 3.3.5.  |t Epidemic thresholds for models on directed networks --  |g 3.3.6.  |t Epidemic thresholds on technological and social networks --  |g 3.3.7.  |t Epidemic thresholds on directed networks with immunization --  |g 3.3.8.  |t Comparisons of epidemic thresholds for directed networks with immunization --  |g 3.3.9.  |t Thresholds for colored network models --  |g 3.3.10.  |t Thresholds for discrete epidemic models --  |g 3.3.11.  |t Basic reproduction number and existence of a positive equilibrium --  |t References --  |g 4.  |t Networked models for SARS and avian influenza --  |g 4.1.  |t Network models of real diseases --  |g 4.2.  |t Plausible models for propagation of the SARS virus --  |g 4.3.  |t Clustering model for SARS transmission: Application to epidemic control and risk assessment --  |g 4.4.  |t Small-world and scale-free models for SARS transmission --  |g 4.5.  |t Super-spreaders and the rate of transmission --  |g 4.6.  |t Scale-free distribution of avian influenza outbreaks --  |g 4.7.  |t Stratified model of ordinary influenza --  |t References --  |g 5.  |t Infectivity functions --  |g 5.1.  |t model with nontrivial infectivity function --  |g 5.1.1.  |t Epidemic threshold for SIS model with piecewise-linear infectivity --  |g 5.1.2.  |t Piecewise smooth and nonlinear infectivity --  |g 5.2.  |t Saturated infectivity --  |g 5.3.  |t Nonlinear infectivity for SIS model on scale-free networks --  |g 5.3.1.  |t epidemic threshold for SIS model on scale-free networks with nonlinear infectivity --  |g 5.3.2.  |t Discussions and remarks --  |t References --  |g 6.  |t SIS models with an infective medium --  |g 6.1.  |t SIS model with an infective medium --  |g 6.1.1.  |t Homogenous complex networks --  |g 6.1.2.  |t Scale-free networks: The Barabasi-Albert model --  |g 6.1.3.  |t Uniform immunization strategy --  |g 6.1.4.  |t Optimized immunization strategies --  |g 6.2.  |t modified SIS model with an infective medium --  |g 6.2.1.  |t modified model --  |g 6.2.2.  |t Epidemic threshold for the modified model with an infective medium --  |g 6.3.  |t Epidemic models with vectors between two separated networks --  |g 6.3.1.  |t Model formulation --  |g 6.3.2.  |t Basic reproduction number --  |g 6.3.3.  |t Sensitivity analysis --  |g 6.4.  |t Epidemic transmission on interdependent networks --  |g 6.4.1.  |t Theoretical modeling --  |g 6.4.2.  |t Mathematical analysis of epidemic dynamics --  |g 6.4.3.  |t Numerical analysis: Effect of model parameters on the basic reproduction number --  |g 6.4.4.  |t Numerical analysis: Effect of model parameters on infected node densities --  |g 6.5.  |t Discussions and remarks --  |t References --  |g 7.  |t Epidemic control and awareness --  |g 7.1.  |t SIS model with awareness --  |g 7.1.1.  |t Background --  |g 7.1.2.  |t model --  |g 7.1.3.  |t Epidemic threshold --  |g 7.1.4.  |t Conclusions and discussions --  |g 7.2.  |t Discrete-time SIS model with awareness --  |g 7.2.1.  |t SIS model with awareness interactions --  |g 7.2.2.  |t Theoretical analysis: Basic reproduction number --  |g 7.2.3.  |t Remarks and discussions --  |g 7.3.  |t Spreading dynamics of a disease-awareness SIS model on complex networks --  |g 7.3.1.  |t Model formulation --  |g 7.3.2.  |t Derivation of limiting systems --  |g 7.3.3.  |t Basic reproduction number and local stability --  |g 7.4.  |t Remarks and discussions --  |t References --  |g 8.  |t Adaptive mechanism between dynamics and epidemics --  |g 8.1.  |t Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks --  |g 8.1.1.  |t Models of complex dynamical network and epidemic network --  |g 8.1.2.  |t Models of epidemic synchrohization and its analysis --  |g 8.1.3.  |t Local stability of epidemic synchronization --  |g 8.1.4.  |t Global stability of epidemic synchronization --  |g 8.2.  |t Interplay between collective behavior and spreading dynamics --  |g 8.2.1.  |t general bidirectional model --  |g 8.2.2.  |t Global synchronization and spreading dynamics --  |g 8.2.3.  |t Stability of global synchronization and spreading dynamics --  |g 8.2.4.  |t Phase synchronization and spreading dynamics --  |g 8.2.5.  |t Control of spreading networks --  |g 8.2.6.  |t Discussions and remarks --  |t References --  |g 9.  |t Epidemic control and immunization --  |g 9.1.  |t SIS model with immunization --  |g 9.1.1.  |t Proportional immunization --  |g 9.1.2.  |t Targeted immunization --  |g 9.1.3.  |t Acquaintance immunization --  |g 9.1.4.  |t Active immunization --  |g 9.2.  |t Edge targeted strategy for controlling epidemic spreading on scale-free networks --  |g 9.3.  |t Remarks and discussions --  |t References --  |g 10.  |t Global stability analysis --  |g 10.1.  |t Global stability analysis of the modified model with an infective medium --  |g 10.2.  |t Global dynamics of the model with vectors between two separated networks --  |g 10.2.1.  |t Global stability of the disease-free equilibrium and existence of the endemic equilibrium --  |g 10.2.2.  |t Uniqueness and global attractivity of the endemic equilibrium --  |g 10.3.  |t Global behavior of disease transmission on interdependent networks --  |g 10.3.1.  |t Existence and global stability of the endemic equilibrium for a disease-awareness SIS model --  |g 10.4.  |t Global behavior of epidemic transmissions --  |g 10.4.1.  |t Stability of the model equilibria --  |g 10.4.2.  |t Stability analysis for discrete epidemic models --  |g 10.4.3.  |t Global stability of the disease-free equilibrium --  |g 10.4.4.  |t Global attractiveness of epidemic disease --  |g 10.5.  |t Global attractivity of a network-based epidemic SIS model --  |g 10.5.1.  |t Positiveness, boundedness and equilibria --  |g 10.5.2.  |t Global attractivity of the model --  |g 10.5.3.  |t Remarks and discussions --  |g 10.6.  |t Global stability 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Epidemiology  |x Mathematical models. 
650 0 |a Epidemiology  |x Methodology. 
650 0 |a Biomathematics. 
650 0 |a Mathematical models. 
650 2 |a Epidemiologic Methods 
650 2 |a Models, Theoretical 
650 6 |a Épidémiologie  |x Modèles mathématiques. 
650 6 |a Épidémiologie  |x Méthodologie. 
650 6 |a Biomathématiques. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MEDICAL  |x Forensic Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Preventive Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Public Health.  |2 bisacsh 
650 7 |a Mathematical models  |2 fast 
650 7 |a Biomathematics  |2 fast 
650 7 |a Epidemiology  |x Mathematical models  |2 fast 
650 7 |a Epidemiology  |x Methodology  |2 fast 
653 |a Australian 
655 0 |a Electronic books. 
700 1 |a Small, Michael  |c (Professor) 
700 1 |a Chen, G.  |q (Guanrong)  |1 https://id.oclc.org/worldcat/entity/E39PBJtGTX3cC6fqJbBvTDp3wC 
758 |i has work:  |a Propagation dynamics on complex networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvQx7KpD7XmBCrj43PYT3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781306254687 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1583675  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25960790 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1583675 
938 |a ebrary  |b EBRY  |n ebr10822341 
938 |a EBSCOhost  |b EBSC  |n 678043 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27167491 
938 |a YBP Library Services  |b YANK  |n 12673308 
938 |a YBP Library Services  |b YANK  |n 11072533 
938 |a YBP Library Services  |b YANK  |n 11441943 
994 |a 92  |b IZTAP