Cargando…

Magnetic resonance imaging : physical principles and sequence design /

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throug...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brown, Robert W., 1941- (Autor), Cheng, Yu-Chung N. (Autor), Haacke, E. Mark (Autor), Thompson, Michael R. (Autor), Venkatesan, Ramesh (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title page
  • Copyright page
  • Foreword to the Second Edition
  • Foreword to the First Edition
  • Dedication
  • Preface to the Second Edition
  • Preface to the First Edition
  • Acknowledgments
  • Acknowledgments to the First Edition
  • Chapter 1: Magnetic Resonance Imaging
  • 1.1 Magnetic Resonance Imaging: The Name
  • 1.2 The Origin of Magnetic Resonance Imaging
  • 1.3 A Brief Overview of MRI Concepts
  • Chapter 2: Classical Response of a Single Nucleus to a Magnetic Field
  • 2.1 Magnetic Moment in the Presence of a Magnetic Field
  • 2.2 Magnetic Moment with Spin: Equation of Motion2.3 Precession Solution: Phase
  • Chapter 3: Rotating Reference Frames and Resonance
  • 3.1 Rotating Reference Frames
  • 3.2 The Rotating Frame for an RF Field
  • 3.3 Resonance Condition and the RF Pulse
  • Chapter 4: Magnetization, Relaxation, and the Bloch Equation
  • 4.1 Magnetization Vector
  • 4.2 Spin-Lattice Interaction and Regrowth Solution
  • 4.3 Spin-Spin Interaction and Transverse Decay
  • 4.4 Bloch Equation and Static-Field Solutions
  • 4.5 The Combination of Static and RF Fields
  • ""Chapter 5: The Quantum Mechanical Basis of Precession and Excitation""""5.1 Discrete Angular Momentum and Energy""; ""5.2 Quantum Operators and the Schrödinger Equation""; ""5.3 Quantum Derivation of Precession""; ""5.4 Quantum Derivation of RF Spin Tipping""; ""Chapter 6: The Quantum Mechanical Basis of Thermal Equilibrium and Longitudinal Relaxation""; ""6.1 Boltzmann Equilibrium Values""; ""6.2 Quantum Basis of Longitudinal Relaxation""; ""6.3 The RF Field""; ""Chapter 7: Signal Detection Concepts""; ""7.1 Faraday Induction""; ""7.2 The MRI Signal and the Principle of Reciprocity""
  • 7.3 Signal from Precessing Magnetization7.4 Dependence on System Parameters
  • Chapter 8: Introductory Signal Acquisition Methods
  • 8.1 Free Induction Decay and T2*
  • 8.2 The Spin Echo and T2 Measurements
  • 8.3 Repeated RF Pulse Structures
  • 8.4 Inversion Recovery and T1 Measurements
  • 8.5 Spectroscopy and Chemical Shift
  • Chapter 9: One-Dimensional Fourier Imaging, k-Space, and Gradient Echoes
  • 9.1 Signal and Effective Spin Density
  • 9.2 Frequency Encoding and the Fourier Transform
  • 9.3 Simple Two-Spin Example
  • 9.4 Gradient Echo and k-Space Diagrams
  • 9.5 Gradient Directionality and NonlinearityChapter 10: Multi-Dimensional Fourier Imaging and Slice Excitation
  • 10.1 Imaging in More Dimensions
  • 10.2 Slice Selection with Boxcar Excitations
  • 10.3 2D Imaging and k-Space
  • 10.4 3D Volume Imaging
  • 10.5 Chemical Shift Imaging
  • Chapter 11: The Continuous and Discrete Fourier Transforms
  • 11.1 The Continuous Fourier Transform
  • 11.2 Continuous Transform Properties and Phase Imaging
  • 11.3 Fourier Transform Pairs
  • 11.4 The Discrete Fourier Transform
  • 11.5 Discrete Transform Properties