Cargando…

Learning OWL class expressions /

With the advent of the Semantic Web and Semantic Technologies, ontologies have become one of the most prominent paradigms for knowledge representation and reasoning. However, recent progress in the field faces a lack of well-structured ontologies with large amounts of instance data due to the fact t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lehmann, Jens, 1982-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Heidelberg : AKA Akademische Verlagesellschaft : IOS Press, 2010.
Colección:Studies on the Semantic Web ; v. 006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn868068724
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140114s2010 gw a ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IOSPR  |d IDEBK  |d EBLCP  |d YDXCP  |d DEBSZ  |d OCLCQ  |d DEBBG  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d VT2  |d AU@  |d OCLCQ  |d OCLCO  |d JBG  |d OCLCO  |d WYU  |d OCLCQ  |d STF  |d DKC  |d OCLCO  |d OCLCQ  |d M8D  |d OCLCA  |d OCLCQ  |d OCLCA  |d AJS  |d OCLCO  |d HS0  |d OCLCQ  |d OCLCO  |d TXE  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a 10,N15  |2 dnb 
016 7 |a 1001424875  |2 DE-101 
019 |a 867820547  |a 869434766  |a 1055329194  |a 1066679282  |a 1081202300 
020 |a 9781614993407  |q (electronic bk.) 
020 |a 1614993408  |q (electronic bk.) 
020 |a 1306284775  |q (ebk) 
020 |a 9781306284776  |q (ebk) 
020 |z 9781607505280 
020 |z 1607505282 
020 |z 9783898386357 
020 |z 389838635X 
029 1 |a DEBBG  |b BV043032406 
029 1 |a DEBBG  |b BV044065886 
029 1 |a DEBSZ  |b 405561148 
029 1 |a DEBSZ  |b 421223863 
035 |a (OCoLC)868068724  |z (OCoLC)867820547  |z (OCoLC)869434766  |z (OCoLC)1055329194  |z (OCoLC)1066679282  |z (OCoLC)1081202300 
037 |a 559728  |b MIL 
050 4 |a TK5105.88815  |b .L44 2010eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.332  |q 22/ger  |2 22 
049 |a UAMI 
100 1 |a Lehmann, Jens,  |d 1982-  |1 https://id.oclc.org/worldcat/entity/E39PBJqFGXTKw9DhXRhHh7RR8C 
245 1 0 |a Learning OWL class expressions /  |c Jens Lehmann. 
264 1 |a Heidelberg :  |b AKA Akademische Verlagesellschaft :  |b IOS Press,  |c 2010. 
300 |a 1 online resource (xiv, 265 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies on the Semantic Web,  |x 1868-1158 ;  |v volume 006 
500 |a Originally presented as: Thesis (doctoral)--Universität Leipzig, 2010. 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a With the advent of the Semantic Web and Semantic Technologies, ontologies have become one of the most prominent paradigms for knowledge representation and reasoning. However, recent progress in the field faces a lack of well-structured ontologies with large amounts of instance data due to the fact that engineering such ontologies requires a considerable investment of resources. Nowadays, knowledge bases often provide large volumes of data without sophisticated schemata. Hence, methods for automated schema acquisition and maintenance are sought. Schema acquisition is closely related to solving typical classification problems in machine learning, e.g. the detection of chemical compounds causing cancer. In this work, we investigate both, the underlying machine learning techniques and their application to knowledge acquisition in the Semantic Web. --Book Jacket. 
505 0 |a Title Page; Acknowledgement; Bibliographic Data; Contents; Chapter 1. Introduction; Motivation; Contributions; Chapter Overview; Chapter 2. Preliminaries and State of the Art; Semantic Web; History and Vision; RDF and SPARQL; Description Logics; OWL; Concept Learning and Inductive Reasoning; History, Tools, and Applications; Learning Problems in OWL/DLs; Refinement Operators in OWL/DLs; Chapter 3. Theoretical Foundations of Refinement Operators; The Role of Minimality; Combinations of Completeness, Properness, Finiteness, Redundancy; Weak Completeness 
505 8 |a Chapter 4. Designing Refinement OperatorsA Complete OWL Refinement Operator; Definition of the Operator; Completeness of the Operator; Achieving Properness; Cardinality Restrictions and Concrete Role Support; Optimisations; An Ideal EL Refinement Operator; EL Trees and Simulation Relations; Formal Description of the EL Refinement Operator; Operator Performance; Chapter 5. Refinement Operator Based OWL Learning Algorithms; OCEL (OWL Class Expression Learner); Redundancy Elimination; Creating a Full Learning Algorithm; ELTL (EL Tree Learner) 
505 8 |a CELOE (Class Expression Learner for Ontology Engineering)Chapter 6. Improving Scalability of OWL Learning Algorithms; The DBpedia Project; The DBpedia Knowledge Extraction Framework; The DBpedia Knowledge Base; Interlinked Web Content; Applications; Knowledge Fragment Selection; What Properties Should the Fragment Have?; Extending Concise Bound Descriptions (CBDs); Extraction Methods; OWL DL Conversion of the Fragment; SPARQL Implementation of Tuple Acquisition; Usage Scenarios; Optimising Coverage Tests; Approximate and Partial Closed World Reasoning; Stochastic Coverage Computation 
505 8 |a Chapter 7. Implementation, Evaluation, and Use CasesThe DL-Learner Project; ILP Learning Problems; Comparison with other Algorithms based on Description Logics; Comparison with other ILP approaches; Ontology Engineering; The Protege Plugin; The OntoWiki Plugin; Evaluation of CELOE; Fragment Extraction Evaluation; Further Applications; Predictions of the Effect of Mutations on the Protein Function; NLP2RDF; ORE -- Ontology Repair and Enrichment; moosique.net -- Music Recommendations; Strengths and Limitations of the Described Approaches; Chapter 8. Related Work 
505 8 |a Inductive Learning in Description LogicsRefenement Operators; (Semi- )Automatic Ontology Engineering; Knowledge Fragment Selection; Chapter 9. Conclusions and Future Work; Refwnement Operators; Learning Algorithms and Scalability; Implementation, Evaluation and Use Cases; Future Work; Chapter A. Software Release History; Chapter B. DL-Learner Manual; What is DL-Learner?; Getting Started; DL-Learner Architecture; DL-Learner Components; Knowledge Sources; Reasoner Components; Learning Problems; Learning Algorithms; DL-Learner Interfaces; Extending DL-Learner; General Information 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ontologies (Information retrieval) 
650 0 |a Semantic Web. 
650 0 |a Machine learning. 
650 6 |a Ontologies (Recherche de l'information) 
650 6 |a Web sémantique. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Ontologies (Information retrieval)  |2 fast 
650 7 |a Semantic Web  |2 fast 
650 7 |a Ontologie  |g Wissensverarbeitung  |2 gnd 
650 7 |a OWL  |g Informatik  |2 gnd 
650 7 |a Terminologische Logik  |2 gnd 
650 7 |a Maschinelles Lernen  |2 gnd 
650 7 |a Wissenserwerb  |2 gnd 
650 7 |a Semantic Web  |2 gnd 
650 0 7 |a Ontologie <Wissensverarbeitung>  |2 swd 
650 0 7 |a OWL <Informatik>  |2 swd 
758 |i has work:  |a Learning OWL class expressions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFywq7WMJ8FWXMJJqvK7xP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lehmann, Jens, 1982-  |t Learning OWL class expressions  |z 9781607505280  |w (DLC) 2011292497  |w (OCoLC)613421587 
830 0 |a Studies on the Semantic Web ;  |v v. 006. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1589008  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1589008 
938 |a EBSCOhost  |b EBSC  |n 683315 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27261174 
938 |a YBP Library Services  |b YANK  |n 11560701 
994 |a 92  |b IZTAP