A tour through mathematical logic /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Washington, D.C. :
Mathematical Association of America,
©2005.
|
Colección: | Carus mathematical monographs ;
no. 30. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- copyright page
- title page
- Preface
- Contents
- 1 Predicate Logic
- 1.1 Introduction
- A very brief history of mathematical logic
- Short Bio: Bertrand Russell
- 1.2 Propositional logic
- 1.3 Quantifiers
- Uniqueness
- Proof methods based on quantifiers
- Translating statements into symbolic form
- 1.4 First-order languages and theories
- Short Bio: Euclid
- 1.5 Examples of first-order theories
- 1.6 Normal forms and complexity
- Second-order logic and Skolem form
- 1.7 Other logics
- Many-valued logic
- Fuzzy logic
- Modal logic
- Nonmonotonic logic.
- Temporal logic
- 2 Axiomatic Set Theory
- 2.1 Introduction
- 2.2 "Naive" set theory
- Short Bio: Georg Ferdinand Cantor
- 2.3 Zermelo-Fraenkel set theory
- Proper axioms of ZF set theory
- Short bio: John von Neumann
- The regularity axiom
- 2.4 Ordinals
- 2.5 Cardinals and the cumulative hierarchy
- Von Neumann cardinals
- The cumulative hierarchy
- 3 Recursion Theory and Computability
- 3.1 Introduction
- Short Bio: Emil Post
- 3.2 Primitive recursive functions
- 3.3 Turing machines and recursive functions
- Short Bio: Alan Turing
- The mu operator.
- 3.4 Undecidability and recursive enumerability
- Recursive enumerability
- 3.5 Complexity theory
- Nondeterministic Turing machines, and P vs. NP
- 4 Gödel's Incompleteness Theorems
- 4.1 Introduction
- 4.2 The arithmetization of formal theories
- Short Bio: Kurt Gödel
- The recursion theorem
- 4.3 A potpourri of incompleteness theorems
- An historical perspective on Gödel's work
- Gödel's second incompleteness theorem
- Hilbert's formalist program, revisited
- 4.4 Strengths and limitations of PA
- Ramsey's theorems and the Paris-Harrington results
- Short Bio: Frank Ramsey.
- 5 Model Theory
- 5.1 Introduction
- 5.2 Basic concepts of model theory
- 5.3 The main theorems of model theory
- The Löwenheim-Skolem
- Tarski theorem
- 5.4 Preservation theorems
- Preservation under submodels and intersections
- Preservation under unions of chains
- Preservation under homomorphic images
- Preservation under direct products
- 5.5 Saturation and complete theories
- Short Bio: Julia Robinson
- 5.6 Quantifier elimination
- 5.7 Additional topics in model theory
- Axiomatizable and nonaxiomatizable classes
- Stone spaces
- Tarski's undefinability theorem.
- Second-order model theory
- 6 Contemporary Set Theory
- 6.1 Introduction
- Some more history of set theory
- 6.2 The relative consistency of AC and GCH
- 6.3 Forcing and the independence results
- 6.4 Modern set theory and large cardinals
- Large cardinals and the consistency of ZF
- 6.5 Descriptive set theory
- Classical descriptive set theory
- Short Bio: Nikolai Luzin
- 6.6 The axiom of determinacy
- Infinite games
- Woodin's program
- 7 Nonstandard Analysis
- 7.1 Introduction
- "Limits vs. infinitesimals" through the ages
- Short Bio: Archimedes.