Cargando…

Methods and Applications of Cycloaddition Reactions in Organic Syntheses.

Organic Syntheses enables synthetic organic chemists to advance their research and develop new functional materials and applications in chemical research, pharmaceuticals, and materials science.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nishiwaki, Nagatoshi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn866449058
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 131221s2013 xx ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d IDEBK  |d MHW  |d COO  |d OCLCO  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781118778180 
020 |a 1118778189 
020 |a 9781118778173  |q (electronic bk.) 
020 |a 1118778170  |q (electronic bk.) 
020 |a 9781118778203 
020 |a 1118778200 
020 |a 9781118299883  |q (cloth) 
020 |a 1118299884  |q (cloth) 
020 |a 9781306219563  |q (MyiLibrary) 
020 |a 1306219566  |q (MyiLibrary) 
029 1 |a DEBSZ  |b 431587191 
035 |a (OCoLC)866449058 
050 4 |a QD262 .M54 2013 
082 0 4 |a 547/.27  |2 23 
049 |a UAMI 
100 1 |a Nishiwaki, Nagatoshi. 
245 1 0 |a Methods and Applications of Cycloaddition Reactions in Organic Syntheses. 
260 |a Hoboken :  |b Wiley,  |c 2013. 
300 |a 1 online resource (673 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |6 880-01  |a Methods and Applications of Cycloaddition Reactions in Organic Syntheses -- Contents -- Preface -- Contributors -- Part I: [2+1] Cycloaddition -- 1 [2+1]-Type Cyclopropanation Reactions -- 1.1 INTRODUCTION -- 1.2 CYCLOPROPANATION REACTION VIA MICHAEL-INDUCED RING CLOSURE REACTION -- 1.2.1 Introduction -- 1.2.2 Halo-Substituted Nucleophiles in MIRC Reaction -- 1.2.3 Ylides for Cyclopropanation -- 1.3 SIMMONS-SMITH CYCLOPROPANATION AND RELATED REACTIONS -- 1.3.1 Introduction -- 1.3.2 The Simmons-Smith Reaction with Zinc Reagents -- 1.4 DIAZOALKANES WITH TRANSITION METAL CATALYSTS -- 1.4.1 Introduction -- 1.4.2 Rhodium-Catalyzed Reactions -- 1.4.4 Ruthenium-Catalyzed Reactions -- 1.4.5 Cobalt- and Iron-Catalyzed Reactions -- 1.4.6 Other Transition Metal-Catalyzed Reactions -- 1.4.7 Cyclopropanation Without Transition Metal Catalysts -- 1.4.8 Cyclopropanation of Dihalocarbenes -- 1.5 CYCLOISOMERIZATION WITH TRANSITION METAL CATALYSTS -- 1.5.1 Introduction -- 1.5.2 Gold Complex-Catalyzed Reactions -- 1.5.3 Palladium Complex-Catalyzed Reactions -- 1.5.4 Platinum Complex-Catalyzed Reactions -- 1.5.5 Ruthenium Complex-Catalyzed Reactions -- 1.5.6 Other Metal Complex-Catalyzed Reactions -- 1.6 KULINKOVICH REACTIONS -- 1.6.1 Introduction -- 1.6.2 The Kulinkovich Reaction to Esters, Ketones, and Amides -- 1.6.3 Kulinkovich Reaction to Nitriles -- 1.6.4 Other Ti-Mediated Cyclopropanation Reactions -- 1.7 MISCELLANEOUS [2+1]-TYPE OF CYCLOPROPANATION REACTIONS -- REFERENCES -- 2 N1 Unit Transfer Reaction To C-C Double Bonds -- 2.1 INTRODUCTION -- 2.2 AZIRIDINATION WITH AZIDES -- 2.3 AZIRIDINATION WITH IMINOIODINANES -- 2.4 AZIRIDINATION WITH N-HALOAMINE SALTS -- 2.5 AZIRIDINATION WITH OTHER N1 UNIT -- 2.6 CONCLUSIONS -- REFERENCES -- Part II: [2+2] Cycloaddition -- 3 Lewis Base Catalyzed Asymmetric Formal [2+2] Cycloadditions -- 3.1 INTRODUCTION. 
505 8 |a 6.4 CHIRAL AND (E)-GEOMETRY-FIXED NITRONE -- 6.4.1 Design, Synthesis, and Cycloaddition of Cyclic Alkoxycarbonylnitrones -- 6.4.2 Chelation Controlled Cycloaddition of Cyclic Alkoxycarbonylnitrone with Allyl Alcohols -- 6.4.3 Syntheses of 4-Hydroxy-4-Substituted Glutamic Acid Using Cycloaddition of (S)-Cyclic Alkoxycarbonylnitrone -- 6.4.4 Synthesis of Maremycins Via Cycloaddition of (S)-Cyclic Alkoxycarbonylnitrone -- 6.5 CONCLUSIONS -- REFERENCES -- 7 Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Imines, Nitrile Oxides, Diazoalkanes, and Carbonyl Ylides -- 7.1 INTRODUCTION -- 7.2 ASYMMETRIC CYCLOADDITION OF AZOMETHINE IMINE -- 7.2.1 Copper-Catalyzed [3+2] Reaction of Terminal Alkyne -- 7.2.2 Chiral Lewis Acid-Catalyzed Cycloaddition -- 7.2.3 Organocatalytic 1,3-Dipolar Cycloaddition -- 7.2.4 1,3-Dipolar Cycloaddition with Allylic Alcohol and Homoallylic Alcohol -- 7.3 ASYMMETRIC CYCLOADDITION OF DIAZOALKANE -- 7.3.1 Cycloaddition of Trimethylsilyldiazomethane -- 7.3.2 Cycloaddition of Diazoacetate -- 7.4 ASYMMETRIC CYCLOADDITION OF NITRILE OXIDE -- 7.4.1 1,3-Dipolar Cycloaddition with Allylic Alcohol -- 7.4.2 Chiral Lewis Acid-Catalyzed Cycloaddition -- 7.5 ASYMMETRIC CYCLOADDITION OF CARBONYL YLIDE -- 7.5.1 Chiral Rh-Catalyzed Cycloaddition- Monoactivation -- 7.5.2 Chiral Lewis Acid-Catalyzed Cycloaddition- Dual Activation -- 7.6 CONCLUSIONS -- REFERENCES -- 8 Condensation of Primary Nitro Compounds to Isoxazole Derivatives: Stoichiometric to Catalytic -- 8.1 INTRODUCTION -- 8.2 CATALYTIC CONDENSATION OF "ACTIVE" NITRO COMPOUNDS -- 8.2.1 The Choice of Solvent -- 8.2.2 Induction Time -- 8.2.3 Acid-Base Catalysis -- 8.2.4 Selectivity, Competition with Other Reactions -- 8.2.5 Furoxans -- 8.3 COPPER CATALYSIS AND CONDENSATION OF NITROALKANES -- 8.4 MECHANISM FOR ACTIVATED NITRO COMPOUNDS -- 8.4.1 Mechanism in Water. 
505 8 |a 8.4.2 Mechanism in Chloroform -- 8.4.3 Mechanism in the Presence of Copper -- 8.5 SYNTHETIC APPLICATIONS AND TABULAR SURVEY -- 8.5.1 Condensation with Base Catalysis in Chloroform -- 8.5.2 Condensation with Base and CuII Catalysis in Chloroform -- 8.5.3 Condensation with Base Catalysis in Ethanol -- 8.5.4 Condensation with Base Catalysis in Water -- ACKNOWLEDGMENTS -- REFERENCES -- 9 Carbamoylnitrile Oxide and Inverse Electron-Demand 1,3-Dipolar Cycloaddition -- 9.1 INTRODUCTION -- 9.2 DIVERSE REACTIVITY OF NITROISOXAZOLONE DERIVATIVES -- 9.3 CYCLOADDITION OF CARBAMOYLNITRILE OXIDE IN AQUEOUS MEDIA -- 9.4 MECHANISTIC STUDY ON GENERATION OF NITRILE OXIDE -- 9.5 ISOLATION OF 1,2,4-OXADIAZOLE DERIVATIVE -- 9.6 OPTIMIZATION OF REACTION CONDITIONS FOR PREPARATION OF 5-METHYLOXADIAZOLE -- 9.7 SYNTHESES OF OTHER 3-CARBAMOYL-1,2,4- OXADIAZOLES -- 9.8 ACTIVATION OF A NITRILE BY A CARBAMOYL GROUP -- 9.9 CYCLOADDITION OF NITRILE OXIDE WITH 1,3-DICARBONYL COMPOUNDS -- 9.10 ACTIVATION OF KETO ESTER BY COORDINATION WITH METAL IONS -- 9.11 CYCLOADDITION WITH OTHER 1,3-DICARBONYL COMPOUNDS -- 9.12 SUMMARY -- REFERENCES -- Part V: [3+2], [3+3], and [4+2] Cycloaddition -- 10 Cycloaddition Reactions of Small Rings -- 10.1 INTRODUCTION -- 10.2 USE OF ORGANOMETALLIC COMPLEXES IN THE [3+2] CYCLOADDITION REACTION WITH CYCLOPROPANES -- 10.3 USE OF DICOBALT COMPLEXES IN THE [4+2] CYCLOADDITION REACTION WITH CYCLOBUTANES -- 10.4 OTHER DIPOLAR CYCLOADDITION REACTIONS -- 10.5 USE OF [3+3] DIPOLAR CYCLOADDITIONS IN THE SYNTHESIS OF OXAZINE DERIVATIVES -- 10.6 INTRAMOLECULAR [3+2] CYCLOADDITION REACTIONS -- 10.7 SYNTHESIS OF TETRAHYDROFURAN DERIVATIVES VIA THE [3+2] CYCLOADDITION REACTION -- 10.8 APPLICATIONS OF [3+2] CYCLOADDITION REACTION TO NATURAL PRODUCTS -- 10.9 SYNTHESIS OF PYRROLIDINES AND PYRAZOLINES DERIVATIVES VIA THE CYCLOADDITION REACTION. 
520 8 |a Organic Syntheses enables synthetic organic chemists to advance their research and develop new functional materials and applications in chemical research, pharmaceuticals, and materials science. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Organic compounds  |x Synthesis. 
650 0 |a Ring formation (Chemistry) 
650 2 |a Cyclization 
650 6 |a Composés organiques  |x Synthèse. 
650 6 |a Cyclisation (Chimie) 
650 7 |a Organic compounds  |x Synthesis  |2 fast 
650 7 |a Ring formation (Chemistry)  |2 fast 
758 |i has work:  |a Methods and applications of cycloaddition reactions in organic syntheses (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGGfpGvVMkcqTKCHwY4C73  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Nishiwaki, Nagatoshi.  |t Methods and Applications of Cycloaddition Reactions in Organic Syntheses.  |d Hoboken : Wiley, ©2013  |z 9781118299883 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1582380  |z Texto completo 
880 8 |6 505-00/(S  |a 3.2 β-LACTAMS: FORMAL [2+2] CYCLOADDITIONS INVOLVING IMINES -- 3.3 β-LACTONES I: FORMAL [2+2] CYCLOADDITIONS INVOLVING ALDEHYDES/KETONES -- 3.4 β-LACTONES II: FORMAL [2+2] CYCLOADDITION OF KETENES LEADING TO KETENE DIMERS -- 3.4.1 Introduction or or -- 3.4.2 Homodimerization -- 3.4.3 Heterodimerization -- 3.5 MISCELLANEOUS FORMAL [2+2] ASYMMETRIC CYCLOADDITION PROCESSES -- 3.5.1 Other Heterocyclic Classes-Introduction -- 3.5.2 Asymmetric Formal [2+2] Cycloadditions -- 3.6 CONCLUSIONS -- REFERENCES -- Part III: [2+2] and [4+2]/[2+2] Cycloaddition -- 4 Catalytic [2+2] Cycloaddition of Silyl Enol Ethers -- 4.1 INTRODUCTION -- 4.2 CATALYTIC [2+2] CYCLOADDITION REACTIONS OF SILYL ENOL ETHERS BY LEWIS ACID CATALYST -- 4.2.1 Introduction -- 4.2.2 Intramolecular [2+2] Cycloaddition Reactions -- 4.2.3 Intermolecular [2+2] Cycloaddition Reactions -- 4.2.4 Asymmetric Catalytic [2+2] Cycloaddition Reaction with Silyl Enol Ethers -- 4.3 CATALYTIC [2+2] CYCLOADDITION REACTIONS OF SILYL ENOL ETHERS BY BRØNSTED ACID -- 4.3.1 Catalytic [2+2] Cycloaddition Reactions of Silyl Enol Ethers by Trifluoromethanesulfonimide -- 4.3.2 Multigram Syntheses of Cyclobutanes and Cyclobutenes by [2+2] Cycloaddition Reactions -- 4.3.3 Analysis of the Mechanism for [2+2] Cycloaddition Reactions by Trifluoromethanesulfonimide -- 4.4 MULTICOMPONENT REACTION: CASCADE [4þ2]-[2+2] CYCLOADDITION REACTION -- 4.4.1 Cascade [4+2]-[2+2] Cycloaddition Reactions with Two Equivalents of Acrylates -- 4.4.2 Cascade [4+2]-[2+2] Cycloaddition Reactions with Three Different Components -- 4.4.3 Application for Synthesis of Paesslerin A Using [4+2]-[2+2] Cycloaddition Reaction -- 4.5 [2+2] CYCLOADDITION REACTIONS USING A FLOWMICROREACTOR SYSTEM -- 4.6 CONCLUSIONS -- REFERENCES -- Part IV: [3+2] Cycloaddition -- 5 [3+2] Cycloaddition of α, β-Unsaturated Metal-Carbene Complexes -- 5.1 INTRODUCTION. 
880 8 |6 505-01/(S  |a 5.2 [3+2] CYCLOADDITION OF α, β-UNSATURATED FISCHER CARBENE COMPLEXES AS A C2-BUILDING BLOCK -- 5.2.1 With Diazomethanes and Nitrilimines -- 5.2.2 With Nitrones -- 5.2.3 With Azomethine Ylide and Azomethine Imines -- 5.2.4 With Heterocyclic 1,3-Dipoles -- 5.2.5 With Azides -- 5.3 [3+2] CYCLOADDITION OF α, β-UNSATURATED FISCHER CARBENE COMPLEXES AS A C3-BUILDING BLOCK -- 5.3.1 Formation of Five-Membered Carbocycles via a 1,2- or 1,4-Addition -- 5.3.2 Formation of Five-Membered Carbocycles via a Metalla-Diels-Alder Reaction -- 5.3.3 Formation of Five-Membered Carbocycles via a SET-Reductive Dimerization -- 5.3.4 Formation of Five-Membered Heterocycles via a Metalla-Diels-Alder Reaction -- 5.3.5 Formation of Five-Membered Heterocycles via a 1,4-Addition -- 5.3.6 Formation of Five-Membered Heterocycles from Imino Carbene Complexes -- 5.4 INTRAMOLECULAR [3+2] CYCLOADDITION OF RUTHENIUM-ALKENYL CARBENE COMPLEX: A NONMETATHETIC BEHAVIOR OF GRUBBS CATALYST -- 5.5 CONCLUSIONS -- REFERENCES -- 6 Geometry-Controlled Cycloaddition of C-Alkoxycarbonyl Nitrones: Synthetic Studies on Nonproteinogenic Amino Acids -- 6.1 INTRODUCTION -- 6.2 SELECTIVE ACTIVATION OF (Z)-ISOMERS OF C-ALKOXYCARBONYLNITRONES -- 6.2.1 Electronic Characteristics of Nitrones Having Electron-Withdrawing Groups -- 6.2.2 Selective Activation of (Z)-Isomers of C-Alkoxycarbonyl Nitrone by Eu(fod)3 -- 6.2.3 Mechanism of Eu(fod)3-Promoted Cycloaddition of C-Alkoxycarbonylnitrone with Vinyl Ethers -- 6.3 TANDEM TRANSESTERIFICATION AND INTRAMOLECULAR CYCLOADDITION OF C-ALKOXYCARBONYLNITRONES WITH ALLYL ALCOHOLS -- 6.3.1 Tandem Transesterification and Intramolecular Cycloaddition of Achiral C-Alkoxycarbonylnitrones with Allyl Alcohols -- 6.3.2 Factors Affecting Diastereoselective Intramolecular Cycloaddition of Nitrones -- 6.3.3 Intramolecular Cycloaddition of Nitrones Bearing a Sugar Auxiliary. 
880 |6 520-00/(S  |a Advanced tools for developing new functional materials and applications in chemical research, pharmaceuticals, and materials science Cycloadditions are among the most useful tools for organic chemists, enabling them to build carbocyclic and heterocyclic structures. These structures can then be used to develop a broad range of functional materials, including pharmaceuticals, agrochemicals, dyes, and optics. With contributions from an international team of leading experts and pioneers in cycloaddition chemistry, this book brings together and reviews recent advances, trends, and emerging research in the field. Methods and Applications of Cycloaddition Reactions in Organic Syntheses focuses on two component cycloadditions, with chapters covering such topics as: N1 unit transfer reaction to C-C double bonds [3+2] Cycloaddition of α, β-unsaturated metal-carbene complexes Formal [3+3] cycloaddition approach to natural product synthesis Development of new methods for the construction of heterocycles based on cycloaddition reaction of 1,3-dipoles Cycloreversion approach for preparation of large π-conjugated compounds Transition metal-catalyzed or mediated [5+1] cycloadditions Readers will learn methods for seamlessly executing important reactions such as Diels-Alder and stereoselective dipolar reactions in order to fabricate heterocyclic compounds, natural products, and functional molecules. The book not only features cutting-edge topics, but also important background information, such as the contributors' process for developing new methodologies, to help novices become fully adept in the field. References at the end of each chapter lead to original research papers and reviews for facilitating further investigation of individual topics. Covering the state of the science and technology, Methods and Applications of Cycloaddition Reactions in 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1582380 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27065529 
938 |a YBP Library Services  |b YANK  |n 11439487 
994 |a 92  |b IZTAP