Electrocatalysis : Theoretical Foundations and Model Experiments, Volume 14.
Volume XIV in the series ""Advances in Electrochemical Sciences and Engineering"" provides a valuable overview of this rapidly developing field by focusing on the aspects that drive the research of today and tomorrow. As such it covers the fundamentals as well as an overview of t...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2013.
|
Colección: | Advances in Electrochemical Sciences and Engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Electrocatalysis: Theoretical Foundations and Model Experiments; Contents; Preface; List of Contributors; 1 Multiscale Modeling of Electrochemical Systems; 1.1 Introduction; 1.2 Introduction to Multiscale Modeling; 1.3 Electronic Structure Modeling; 1.3.1 Modern Electronic Structure Theory; 1.3.1.1 Quantum Mechanical Foundations; 1.3.1.2 Born-Oppenheimer Approximation; 1.3.1.3 Single-Electron Hamiltonians; 1.3.1.4 Basis Sets; 1.3.1.5 Enforcing the Pauli Principle; 1.3.1.6 Electron Correlation Methods; 1.3.1.7 Density Functional Theory.
- 1.3.2 Applications of Electronic Structure to Geometric Properties1.3.2.1 Geometry Optimization; 1.3.2.2 Transition State Searches; 1.3.3 Corrections to Potential Energy Surfaces and Reaction Pathways; 1.3.3.1 Energy and Entropy Corrections; 1.3.3.2 Thermodynamic State Functions; 1.3.3.3 Reaction Energies and Rates; 1.3.4 Electronic Structure Models in Electrochemistry; 1.3.4.1 Modeling the Electrode Surface: Cluster versus Slab; 1.3.4.2 Modeling the Solvent: Explicit versus Implicit; 1.3.4.3 Modeling the Electrode Potential; 1.3.5 Summary; 1.4 Molecular Simulations.
- 1.4.1 Energy Terms and Force Field Parameters1.4.1.1 Covalent Bond Interactions; 1.4.1.2 Non-Covalent Interactions; 1.4.2 Parametrization and Validation; 1.4.3 Atomistic Simulations; 1.4.3.1 Monte Carlo Methods; 1.4.3.2 Molecular Dynamics; 1.4.3.3 QM/MM; 1.4.4 Sampling and Analysis; 1.4.5 Applications of Molecular Modeling in Electrochemistry; 1.4.6 Summary; 1.5 Reaction Modeling; 1.5.1 Introduction; 1.5.2 Chemical Kinetics; 1.5.3 Kinetic Monte Carlo; 1.5.3.1 System States and the Lattice Approximation; 1.5.3.2 Reaction Rates; 1.5.3.3 Reaction Dynamics.
- 1.5.3.4 Applications of kMC in Electrochemistry1.5.4 Summary; 1.6 The Oxygen Reduction Reaction on Pt(111); 1.6.1 Introduction to the Oxygen Reduction Reaction; 1.6.2 Preliminary Considerations; 1.6.3 DFT Calculations; 1.6.4 Method Validation; 1.6.5 Reaction Energies; 1.6.6 Solvation Effects; 1.6.7 Free Energy Contributions; 1.6.8 Influence of an Electrode Potential; 1.6.9 Modeling the Kinetic Rates; 1.6.10 Summary; 1.7 Formic Acid Oxidation on Pt(111); 1.7.1 Introduction to Formic Acid Oxidation; 1.7.2 Density Functional Theory Calculations; 1.7.3 Gas Phase Reactions.
- 1.7.4 Explicit Solvation Model1.7.5 Eley-Rideal Mechanisms and the Electrode Potential; 1.7.6 Kinetic Rate Model of Formic Acid Oxidation; 1.7.7 Summary; 1.8 Concluding Remarks; References; 2 Statistical Mechanics and Kinetic Modeling of Electrochemical Reactions on Single-Crystal Electrodes Using the Lattice-Gas Approximation; 2.1 Introduction; 2.2 Lattice-Gas Modeling of Electrochemical Surface Reactions; 2.3 Statistical Mechanics and Approximations; 2.3.1 Static System; 2.3.2 Dynamical System; 2.4 Monte Carlo Simulations.