|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn865655620 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
131220s2013 xx o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d EBLCP
|d MHW
|d DEBSZ
|d MEAUC
|d OCLCQ
|d AZU
|d OCLCO
|d OCLCF
|d OCLCQ
|d ZCU
|d MERUC
|d OCLCQ
|d ICG
|d AU@
|d OCLCQ
|d WYU
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1059074922
|
020 |
|
|
|a 1306203856
|q (ebk)
|
020 |
|
|
|a 9781306203852
|q (ebk)
|
020 |
|
|
|a 9781118649497
|
020 |
|
|
|a 1118649494
|
020 |
|
|
|a 1848214731
|
020 |
|
|
|a 9781848214736
|
029 |
1 |
|
|a DEBSZ
|b 399573100
|
029 |
1 |
|
|a DEBSZ
|b 425887081
|
029 |
1 |
|
|a DEBSZ
|b 431583404
|
029 |
1 |
|
|a DEBSZ
|b 449403785
|
035 |
|
|
|a (OCoLC)865655620
|z (OCoLC)1059074922
|
037 |
|
|
|a 551636
|b MIL
|
050 |
|
4 |
|a QA278 .G384 2013
|
082 |
0 |
4 |
|a 519.53
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Govaert, G?rard.
|
245 |
1 |
0 |
|a Co-Clustering.
|
260 |
|
|
|b Wiley-ISTE,
|c 2013.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a FOCUS Series
|
520 |
|
|
|a Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixtures adapt.
|
505 |
0 |
|
|a Cover; Title page; Table of Contents; Acknowledgment; Introduction; I.1. Types and representation of data; I.1.1. Binary data; I.1.2. Categorical data; I.1.3. Continuous data; I.1.4. Contingency table; I.1.5. Data representations; I.2. Simultaneous analysis; I.2.1. Data analysis; I.2.2. Co-clustering; I.2.3. Applications; I.3. Notation; I.4. Different approaches; I.4.1. Two-mode partitioning; I.4.2. Two-mode hierarchical clustering; I.4.3. Direct or block clustering; I.4.4. Biclustering; I.4.5. Other structures and other aims; I.5. Model-based co-clustering; I.6. Outline.
|
505 |
8 |
|
|a Chapter 1. Cluster Analysis1.1. Introduction; 1.2. Miscellaneous clustering methods; 1.2.1. Hierarchical approach; 1.2.2. The k-means algorithm; 1.2.3. Other approaches; 1.3. Model-based clustering and the mixture model; 1.4. EM algorithm; 1.4.1. Complete data and complete-data likelihood; 1.4.2. Principle; 1.4.3. Application to mixture models; 1.4.4. Properties; 1.4.5. EM: an alternating optimization algorithm; 1.5. Clustering and the mixture model; 1.5.1. The two approaches; 1.5.2. Classification likelihood; 1.5.3. The CEM algorithm; 1.5.4. Comparison of the two approaches.
|
505 |
8 |
|
|a 1.5.5. Fuzzy clustering1.6. Gaussian mixture model; 1.6.1. The model; 1.6.2. CEM algorithm; 1.6.3. Spherical form, identical proportions and volumes; 1.6.4. Spherical form, identical proportions but differing volumes; 1.6.5. Identical covariance matrices and proportions; 1.7. Binary data; 1.7.1. Binary mixture model; 1.7.2. Parsimonious model; 1.7.3. Examples of application; 1.8. Categorical variables; 1.8.1. Multinomial mixture model; 1.8.2. Parsimonious model; 1.9. Contingency tables; 1.9.1. MNDKI2 algorithm; 1.9.2. Model-based approach; 1.9.3. Illustration; 1.10. Implementation.
|
505 |
8 |
|
|a 1.10.1. Choice of model and of the number of classes1.10.2. Strategies for use; 1.10.3. Extension to particular situations; 1.11. Conclusion; Chapter 2. Model-Based Co-Clustering; 2.1. Metric approach; 2.2. Probabilistic models; 2.3. Latent block model; 2.3.1. Definition; 2.3.2. Link with the mixture model; 2.3.3. Log-likelihoods; 2.3.4. A complex model; 2.4. Maximum likelihood estimation and algorithms; 2.4.1. Variational EM approach; 2.4.2. Classification EM approach; 2.4.3. Stochastic EM-Gibbs approach; 2.5. Bayesian approach; 2.6. Conclusion and miscellaneous developments.
|
505 |
8 |
|
|a Chapter 3. Co-Clustering of Binary and Categorical Data3.1. Example and notation; 3.2. Metric approach; 3.3. Bernoulli latent block model and algorithms; 3.3.1. The model; 3.3.2. Model identifiability; 3.3.3. Binary LBVEM and LBCEM algorithms; 3.4. Parsimonious Bernoulli LBMs; 3.5. Categorical data; 3.6. Bayesian inference; 3.7. Model selection; 3.7.1. The integrated completed log-likelihood (ICL); 3.7.2. Penalized information criteria; 3.8. Illustrative experiments; 3.8.1. Townships; 3.8.2. Mero; 3.9. Conclusion; Chapter 4. Co-Clustering of Contingency Tables; 4.1. Measures of association.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cluster analysis.
|
650 |
|
6 |
|a Classification automatique (Statistique)
|
650 |
|
7 |
|a Cluster analysis
|2 fast
|
758 |
|
|
|i has work:
|a Co-clustering (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFy4fWc3MWTrfxX7CX6c4C
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9781306203852
|
830 |
|
0 |
|a FOCUS Series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1580022
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1580022
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27030038
|
994 |
|
|
|a 92
|b IZTAP
|