|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn865456371 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
140613t20132013riu ob 100 0 eng d |
040 |
|
|
|a COO
|b eng
|e rda
|e pn
|c COO
|d OCLCO
|d EBLCP
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d NOC
|d AU@
|d UKAHL
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9780821891483
|
020 |
|
|
|a 0821891480
|
020 |
|
|
|a 9781470410834
|q (e-book)
|
020 |
|
|
|a 1470410834
|q (e-book)
|
029 |
1 |
|
|a AU@
|b 000054923648
|
035 |
|
|
|a (OCoLC)865456371
|
050 |
|
4 |
|a QC20.7.F73
|b .P57 2013eb
|
082 |
0 |
4 |
|a 514/.742
|2 23
|
084 |
|
|
|a 28A12
|a 28A78
|a 28A80
|a 11M26
|a 11M41
|a 37A45
|a 37C45
|a 37F10
|a 58B20
|a 58C40
|2 msc
|
049 |
|
|
|a UAMI
|
111 |
2 |
|
|a PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics
|d (2011 :
|c Messina, Italy)
|
245 |
1 |
0 |
|a Fractal geometry and dynamical systems in pure and applied mathematics II :
|b fractals in applied mathematics /
|c David Carfi [and three others], editors.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2013.
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (384 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Contemporary Mathematics,
|x 1098-3627 ;
|v Volume 601
|
500 |
|
|
|a "PISRS 2011, First International Conference : Analysis, Fractal Geometry, Dynamical Systems and Economics, November 8-12, 2011, Messina, Sicily, Italy."
|
500 |
|
|
|a "AMS Special Session, in memory of Benoit Mandelbrot : Fractal Geometry in Pure and Applied Mathematics, January 4-7, 2012, Boston, Massachusetts."
|
500 |
|
|
|a "AMS Special Session : Geometry and Analysis on Fractal Spaces, March 3-4, 2012, Honolulu, Hawaii."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Statistical Mechanics and Quantum Fields on Fractals; 1. Introduction; 2. Discrete scaling symmetry -- Self similarity -- Definitions; 3. Heat kernel and spectral functions -- Generalities; 4. Laplacian on fractals -- Heat kernel and spectral zeta function; 5. Thermodynamics on photons : The fractal blackbody [34]; 6. Conclusion and some open questions; Acknowledgments; References; Spectral Algebra of the Chernov and Bogoslovsky Finsler Metric Tensors; Preliminaries; 1. Spectral theory prerequisites; 2. Spectral results for low dimensions; 3. Conclusions; References.
|
505 |
8 |
|
|a Local Multifractal Analysis1. Introduction; 2. Properties of the local Hausdorff dimension and the local multifractal spectrum; 3. A local multifractal formalism for a dyadic family; 4. Measures with varying local spectrum; 5. Local spectrum of stochastic processes; 6. Other regularity exponents characterized by dyadic families; 7. A functional analysis point of view; Acknowledgement; References; Extreme Risk and Fractal Regularity in Finance; 1. Introduction; 2. Fractal Regularities in Financial Markets; 3. The Markov-Switching Multifractal (MSM); 4. Pricing Multifractal Risk; 5. Conclusion.
|
505 |
8 |
|
|a 2. Functional equations for infinite graphsReferences; Vector Analysis on Fractals and Applications; 1. Introduction; 2. Dirichlet forms and energy measures; 3. 1-forms and vector fields; 4. Scalar PDE involving first order terms; 5. Navier-Stokes equations; 6. Magnetic Schrödinger equations; References; Non-Regularly Varying and Non-Periodic Oscillation of the On-Diagonal Heat Kernels on Self-Similar Fractals; 1. Introduction; 2. Framework and main results; 3. Proof of Theorems 2.17 and 2.18; 4. Post-critically finite self-similar fractals.
|
505 |
8 |
|
|a 4.1. Harmonic structures and resulting self-similar Dirichlet spaces4.2. Cases with good symmetry and affine nested fractals; 4.3. Cases possibly without good symmetry; 5. Sierpiński carpets; References; Lattice Effects in the Scaling Limit of the Two-Dimensional Self-Avoiding Walk; 1. Introduction; 2. Lattice effects; 3. Simulations; 4. Conclusions and future work; References; The Casimir Effect on Laakso Spaces; 1. Introduction; 2. Laakso spaces; 3. Spectral Zeta Functions; 4. Casimir Effect; 5. Finite Approximations to Laakso Spaces; 6. Casimir Effect on L; 7. A Higher Dimensional Case.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Fractals
|v Congresses.
|
650 |
|
6 |
|a Fractales
|v Congrès.
|
650 |
|
7 |
|a Fractals
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
700 |
1 |
|
|a Carfi, David,
|d 1971-
|e editor.
|
758 |
|
|
|i has work:
|a Fractal geometry and dynamical systems in pure and applied mathematics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG77trTfRgtptqjpVJDGtq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 : Messina, Italy).
|t Fractal geometry and dynamical systems in pure and applied mathematics II : fractals in applied mathematics.
|d Providence, Rhode Island : American Mathematical Society, ©2013
|h viii, 372 pages
|k Contemporary mathematics (American Mathematical Society) ; Volume 601
|x 1098-3627
|z 9780821891483
|
830 |
|
0 |
|a Contemporary mathematics (American Mathematical Society) ;
|v Volume 601.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113271
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34993593
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113271
|
994 |
|
|
|a 92
|b IZTAP
|