Cargando…

Additive operator-difference schemes : splitting schemes /

Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vabishchevich, P. N. (Petr Nikolaevich) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, [2013]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn865330717
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 131214t20132014gw a ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d CDX  |d CNSPO  |d N$T  |d COO  |d CUS  |d OCLCF  |d OCLCQ  |d OCLCO  |d YDXCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d CGU  |d CCO  |d LOA  |d PIFAG  |d FVL  |d VGM  |d DEGRU  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d WYU  |d STF  |d LEAUB  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d U9X  |d AUD  |d BRF  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCL 
019 |a 881081654  |a 885389482  |a 893925715  |a 921284016  |a 979906440  |a 1086956189  |a 1241761091  |a 1264897015 
020 |a 9783110321463  |q (electronic bk.) 
020 |a 3110321467  |q (electronic bk.) 
020 |z 9783110321432 
020 |z 3110321432 
024 7 |a 10.1515/9783110321463  |2 doi 
029 1 |a AU@  |b 000068438547 
029 1 |a DEBBG  |b BV043121011 
029 1 |a DEBSZ  |b 408927313 
029 1 |a DEBSZ  |b 421231467 
029 1 |a DEBSZ  |b 431566429 
035 |a (OCoLC)865330717  |z (OCoLC)881081654  |z (OCoLC)885389482  |z (OCoLC)893925715  |z (OCoLC)921284016  |z (OCoLC)979906440  |z (OCoLC)1086956189  |z (OCoLC)1241761091  |z (OCoLC)1264897015 
050 4 |a QA378 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |a 515.724  |a 515/.724 
084 |a SK 920  |2 rvk 
049 |a UAMI 
100 1 |a Vabishchevich, P. N.  |q (Petr Nikolaevich),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjF8jKjfVhQjTKxWC9Wr4m 
245 1 0 |a Additive operator-difference schemes :  |b splitting schemes /  |c Petr N. Vabishchevich. 
264 1 |a Berlin :  |b De Gruyter,  |c [2013] 
264 4 |c ©2014 
300 |a 1 online resource (xvi, 354 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 0 |a Print version record. 
505 0 |a Preface; Notation; 1 Introduction; 1.1 Numerical methods; 1.2 Additive operator-difference schemes; 1.3 The main results; 1.4 Contents of the book; 2 Stability of operator-difference schemes; 2.1 The Cauchy problem for an operator-differential equation; 2.1.1 Hilbert spaces; 2.1.2 Linear operators in a finite-dimensional space; 2.1.3 Operators in a finite-dimensional Hilbert space; 2.1.4 The Cauchy problem for an evolutionary equation of first order; 2.1.5 Systems of linear ordinary differential equations; 2.1.6 A boundary value problem for a one-dimensional parabolic equation. 
505 8 |a 2.1.7 Equations of second order2.2 Two-level schemes; 2.2.1 Key concepts; 2.2.2 Stability with respect to the initial data; 2.2.3 Stability with respect to the right-hand side; 2.2.4 Schemes with weights; 2.3 Three-level schemes; 2.3.1 Stability with respect to the initial data; 2.3.2 Reduction to a two-level scheme; 2.3.3 P-stability of three-level schemes; 2.3.4 Estimates in simpler norms; 2.3.5 Stability with respect to the right-hand side; 2.3.6 Schemes with weights for equations of first order; 2.3.7 Schemes with weights for equations of second order. 
505 8 |a 2.4 Stability in finite-dimensional Banach spaces2.4.1 The Cauchy problem for a system of ordinary differential equations; 2.4.2 Scheme with weights; 2.4.3 Difference schemes for a one-dimensional parabolic equation; 2.5 Stability of projection-difference schemes; 2.5.1 Preliminary observations; 2.5.2 Stability of finite element techniques; 2.5.3 Stability of projection-difference schemes; 2.5.4 Conditions for -stability of projection-difference schemes; 2.5.5 Schemes with weights; 2.5.6 Stability with respect to the right-hand side. 
505 8 |a 2.5.7 Stability of three-level schemes with respect to the initial data2.5.8 Stability with respect to the right-hand side; 2.5.9 Schemes for an equation of first order; 3 Operator splitting; 3.1 Time-dependent problems of convection-diffusion; 3.1.1 Differential problem; 3.1.2 Semi-discrete problem; 3.1.3 Two-level schemes; 3.2 Splitting operators in convection-diffusion problems; 3.2.1 Splitting with respect to spatial variables; 3.2.2 Splitting with respect to physical processes; 3.2.3 Schemes for problems with an operator semibounded from below; 3.3 Domain decomposition methods. 
505 8 |a 3.3.1 Preliminaries3.3.2 Model boundary value problems; 3.3.3 Standard finite difference approximations; 3.3.4 Domain decomposition; 3.3.5 Problems with non-self-adjoint operators; 3.4 Difference schemes for time-dependent vector problems; 3.4.1 Preliminary discussions; 3.4.2 Statement of the problem; 3.4.3 Estimates for the solution of differential problems; 3.4.4 Approximation in space; 3.4.5 Schemes with weights; 3.4.6 Alternating triangle method; 3.5 Problems of hydrodynamics of an incompressible fluid; 3.5.1 Differential problem; 3.5.2 Discretization in space. 
500 |a 3.5.3 Peculiarities of hydrodynamic equations written in the primitive variables. 
520 |a Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy. 
504 |a Includes bibliographical references and index. 
546 |a In English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Initial value problems. 
650 0 |a Boundary value problems. 
650 0 |a Differential operators. 
650 0 |a Mathematical models. 
650 6 |a Problèmes aux valeurs initiales. 
650 6 |a Problèmes aux limites. 
650 6 |a Opérateurs différentiels. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Differential operators  |2 fast 
650 7 |a Initial value problems  |2 fast 
650 7 |a Mathematical models  |2 fast 
650 7 |a Differenzenverfahren  |2 gnd 
650 7 |a Partielle Differentialgleichung  |2 gnd 
650 7 |a Operator-Splitting-Verfahren  |2 gnd 
758 |i has work:  |a Additive operator-difference schemes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHGcwvXpBFjQkgrjPCtPP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Vabishchevich, P.N. (Petr Nikolaevich).  |t Additive operator-difference schemes.  |d Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, [2014]  |z 9783110321432  |w (DLC) 2013029893  |w (OCoLC)854848160 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1563353  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25823246 
938 |a Coutts Information Services  |b COUT  |n 27034093 
938 |a De Gruyter  |b DEGR  |n 9783110321463 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1563353 
938 |a EBSCOhost  |b EBSC  |n 674406 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27034093 
938 |a YBP Library Services  |b YANK  |n 10818611 
994 |a 92  |b IZTAP