COMPUTER VISION IN MEDICAL IMAGING.
The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
WSPC,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; CONTENTS; Chapter 1 An Introduction to Computer Vision in Medical Imaging Chi Hau Chen; 1. Introduction; 2. Some Medical Imaging Methods; 2.1. X-ray; 2.2. Magnetic Resonance Image (MRI); 2.3. Intravascular Ultrasound (IVUS); 3. Roles of Computer Vision, Image Processing and Pattern Recognition; 4. Active Contours; 4.1. Snakes; 4.2. Level set methods; 4.3. Geodesic active contours; 4.4. Region-based active contours; 4.5. Hybrid evolution method; 4.6. IVUS image segmentation; 5. Concluding Remarks; Acknowledgment; References; Part 1 Theory and Methodologies
- Chapter 2 Distribution Matching Approaches to Medical Image Segmentation Ismail Ben Ayed1. Introduction; 2. Formulations; 3. Optimization Aspects; 3.1. Specialized optimizers; 3.2. Derivative-based optimizers; 3.2.1. Active curves and level sets; 3.2.2. Line search and trust region methods; 3.3. Bound optimizers; 3.3.1. Graph cuts; 3.3.2. Convex-relaxation techniques; 4. Medical Imaging Applications; 4.1. Left ventricle segmentation in cardiac images; 4.1.1. Example; 4.2. Vertebral-body segmentation in spine images; 4.2.1. Example; 4.3. Brain tumor segmentation; 5. Conclusion and Outlook
- Chapter 4 Adaptive Shape Prior Modeling via Online Dictionary Learning Shaoting Zhang, Yiqiang Zhan, Yan Zhou and Dimitris Metaxas1. Introduction; 2. Relevant Work; 3. Methodology; 3.1. Sparse Shape Composition; 3.2. Shape Dictionary Learning; 3.3. Online Shape Dictionary Update; 4. Experiments; 4.1. Lung Localization; 4.2. Real-time Left Ventricle Tracking; 5. Conclusions; References; Chapter 5 Feature-Centric Lesion Detection and Retrieval in Thoracic Images Yang Song, Weidong Cai, Stefan Eberl, Michael J Fulham and David Dagan Feng; 1. Lesion Detection; 1.1. Review of State-of-the-art
- 1.2. Region-based Feature Classification1.2.1. Region Type Identification; 1.2.2. Region Type Refinement; 1.2.3. 3D Object Localization; 1.3. Multi-stage Discriminative Model; 1.3.1. Abnormality Detection; 1.3.2. Tumor and Lymph Node Differentiation; 1.3.3. Tumor Region Refinement; 1.3.4. Experimental Results; 1.4. Data Adaptive Structure Estimation; 1.4.1. Initial Abnormality Detection; 1.4.2. Adaptive Structure Estimation; 1.4.3. Feature Extraction and Classification; 1.4.4. Experimental Results; 2. Thoracic Image Retrieval; 2.1. Review of State-of-the-art