Cargando…

COMPUTER VISION IN MEDICAL IMAGING.

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chen, C. H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: WSPC, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn864743725
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 131206s2013 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO 
020 |a 1306183170  |q (ebk) 
020 |a 9781306183178  |q (ebk) 
020 |a 9789814460941 
020 |a 981446094X 
029 1 |a AU@  |b 000058200308 
029 1 |a DEBBG  |b BV044065517 
029 1 |a DEBSZ  |b 399219285 
029 1 |a DEBSZ  |b 454999356 
035 |a (OCoLC)864743725 
037 |a 549568  |b MIL 
050 4 |a TA1634 .C384 2013 
082 0 4 |a 006.37 
049 |a UAMI 
100 1 |a Chen, C. H. 
245 1 0 |a COMPUTER VISION IN MEDICAL IMAGING. 
260 |b WSPC,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Preface; CONTENTS; Chapter 1 An Introduction to Computer Vision in Medical Imaging Chi Hau Chen; 1. Introduction; 2. Some Medical Imaging Methods; 2.1. X-ray; 2.2. Magnetic Resonance Image (MRI); 2.3. Intravascular Ultrasound (IVUS); 3. Roles of Computer Vision, Image Processing and Pattern Recognition; 4. Active Contours; 4.1. Snakes; 4.2. Level set methods; 4.3. Geodesic active contours; 4.4. Region-based active contours; 4.5. Hybrid evolution method; 4.6. IVUS image segmentation; 5. Concluding Remarks; Acknowledgment; References; Part 1 Theory and Methodologies 
505 8 |a Chapter 2 Distribution Matching Approaches to Medical Image Segmentation Ismail Ben Ayed1. Introduction; 2. Formulations; 3. Optimization Aspects; 3.1. Specialized optimizers; 3.2. Derivative-based optimizers; 3.2.1. Active curves and level sets; 3.2.2. Line search and trust region methods; 3.3. Bound optimizers; 3.3.1. Graph cuts; 3.3.2. Convex-relaxation techniques; 4. Medical Imaging Applications; 4.1. Left ventricle segmentation in cardiac images; 4.1.1. Example; 4.2. Vertebral-body segmentation in spine images; 4.2.1. Example; 4.3. Brain tumor segmentation; 5. Conclusion and Outlook 
505 8 |a Chapter 4 Adaptive Shape Prior Modeling via Online Dictionary Learning Shaoting Zhang, Yiqiang Zhan, Yan Zhou and Dimitris Metaxas1. Introduction; 2. Relevant Work; 3. Methodology; 3.1. Sparse Shape Composition; 3.2. Shape Dictionary Learning; 3.3. Online Shape Dictionary Update; 4. Experiments; 4.1. Lung Localization; 4.2. Real-time Left Ventricle Tracking; 5. Conclusions; References; Chapter 5 Feature-Centric Lesion Detection and Retrieval in Thoracic Images Yang Song, Weidong Cai, Stefan Eberl, Michael J Fulham and David Dagan Feng; 1. Lesion Detection; 1.1. Review of State-of-the-art 
505 8 |a 1.2. Region-based Feature Classification1.2.1. Region Type Identification; 1.2.2. Region Type Refinement; 1.2.3. 3D Object Localization; 1.3. Multi-stage Discriminative Model; 1.3.1. Abnormality Detection; 1.3.2. Tumor and Lymph Node Differentiation; 1.3.3. Tumor Region Refinement; 1.3.4. Experimental Results; 1.4. Data Adaptive Structure Estimation; 1.4.1. Initial Abnormality Detection; 1.4.2. Adaptive Structure Estimation; 1.4.3. Feature Extraction and Classification; 1.4.4. Experimental Results; 2. Thoracic Image Retrieval; 2.1. Review of State-of-the-art 
520 |a The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computer vision. 
650 0 |a Diagnostic imaging. 
650 2 |a Diagnostic Imaging 
650 6 |a Vision par ordinateur. 
650 6 |a Imagerie pour le diagnostic. 
650 7 |a Computer vision  |2 fast 
650 7 |a Diagnostic imaging  |2 fast 
776 0 8 |i Print version:  |z 9781306183178 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1578315  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1578315 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26897712 
994 |a 92  |b IZTAP