Cargando…

Stirling Cycle Engines : Inner Workings and Design.

Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by whi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Organ, Allan J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiley, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Stirling Cycle Engines
  • Contents
  • About the Author
  • Foreword
  • Preface
  • Notation
  • 1 Stirling myth
  • and Stirling reality
  • 1.1 Expectation
  • 1.2 Myth by myth
  • 1.2.1 That the quarry engine of 1818 developed 2 hp
  • 1.2.2 That the limiting efficiency of the stirling engine is that of the Carnot cycle
  • 1.2.3 That the 1818 engine operated 'on a principle entirely new'
  • 1.2.4 That the invention was catalyzed by Stirlings concern over steam boiler explosions
  • 1.2.5 That younger brother James was the true inventor
  • 1.2.6 That 90 degrees and unity respectively are acceptable 'default' values for thermodynamic phase angle a and volume ratio K
  • 1.2.7 That dead space (un-swept volume) is a necessary evil
  • 1.3 and some heresy
  • 1.4 Why this crusade?
  • 2 Réflexions sur le cicle de Carnot
  • 2.1 Background
  • 2.2 Carnot re-visited
  • 2.3 Isothermal cylinder
  • 2.4 Specimen solutions
  • 2.5 'Realistic' Carnot cycle
  • 2.6 'Equivalent' polytropic index
  • 2.7 Réflexions
  • 3 What Carnot efficiency?
  • 3.1 Epitaph to orthodoxy
  • 3.2 Putting Carnot to work
  • 3.3 Mean cycle temperature difference, Tx T
  • Tw
  • 3.4 Net internal loss by inference
  • 3.5 Why no p-V diagram for the 'ideal' Stirling cycle?
  • 3.6 The way forward
  • 4 Equivalence conditions for volume variations
  • 4.1 Kinematic configuration
  • 4.2 'Additional' dead space
  • 4.3 Net swept volume
  • 5 The optimum versus optimization
  • 5.1 An engine from Turkey rocks the boat
  • 5.2 ... and an engine from Duxford
  • 5.3 Schmidt on Schmidt
  • 5.3.1 Volumetric compression ratio rv
  • 5.3.2 Indicator diagram shape
  • 5.3.3 More from the re-worked Schmidt analysis
  • 5.4 Crank-slider mechanism again
  • 5.5 Implications for engine design in general
  • 6 Steady-flow heat transfer correlations
  • 6.1 Turbulent
  • or turbulent?
  • 6.2 Eddy dispersion time.
  • 6.3 Contribution from 'inverse modelling'
  • 6.4 Contribution from Scaling
  • 6.5 What turbulence level?
  • 7 A question of adiabaticity
  • 7.1 Data
  • 7.2 The Archibald test
  • 7.3 A contribution from Newton
  • 7.4 Variable-volume space
  • 7.5 Désaxé
  • 7.6 Thermal diffusion
  • axi-symmetric case
  • 7.7 Convection versus diffusion
  • 7.8 Bridging the gap
  • 7.9 Interim deductions
  • 8 More adiabaticity
  • 8.1 'Harmful' dead space
  • 8.2 'Equivalent' steady-flow closed-cycle regenerative engine
  • 8.3 'Equivalence'
  • 8.4 Simulated performance
  • 8.5 Conclusions
  • 8.6 Solution algorithm
  • 9 Dynamic Similarity
  • 9.1 Dynamic similarity
  • 9.2 Numerical example
  • 9.3 Corroboration
  • 9.4 Transient response of regenerator matrix
  • 9.5 Second-order effects
  • 9.6 Application to reality
  • 10 Intrinsic Similarity
  • 10.1 Scaling and similarity
  • 10.2 Scope
  • 10.2.1 Independent variables
  • 10.2.2 Dependent variables
  • 10.2.3 Local, instantaneous Reynolds number Re
  • 10.3 First steps
  • 10.4 without the computer
  • 11 Getting started
  • 11.1 Configuration
  • 11.2 Slots versus tubes
  • 11.3 The 'equivalent' slot
  • 11.4 Thermal bottleneck
  • 11.5 Available work lost
  • conventional arithmetic
  • 12 FastTrack gas path design
  • 12.1 Introduction
  • 12.2 Scope
  • 12.3 Numerical example
  • 12.4 Interim comment
  • 12.5 Rationale behind FastTrack
  • 12.6 Alternative start point
  • GPU-3 charged with He
  • 13 FlexiScale
  • 13.1 FlexiScale?
  • 13.2 Flow path dimensions
  • 13.3 Operating conditions
  • 13.4 Regenerator matrix
  • 13.5 Rationale behind FlexiScale
  • 14 ReScale
  • 14.1 Introduction
  • 14.2 Worked example step-by-step
  • 14.2.1 Tubular exchangers
  • 14.2.2 Regenerator
  • 14.3 Regenerator matrix
  • 14.4 Rationale behind ReScale
  • 14.4.1 Tubular exchangers
  • 14.4.2 Regenerator.
  • 15 Less steam, more traction
  • Stirling engine design without the hot air
  • 15.1 Optimum heat exchanger
  • 15.2 Algebraic development
  • 15.3 Design sequence
  • 15.4 Note of caution
  • 16 Heat transfer correlations
  • from the horses mouth
  • 16.1 The time has come
  • 16.2 Application to design
  • 16.3 Rationale behind correlation parameters RE and XQXE
  • 16.3.1 Corroboration from dimensional analysis
  • 17 Wire-mesh regenerator
  • 'back of envelope' sums
  • 17.1 Status quo
  • 17.2 Temperature swing
  • 17.2.1 Thermal capacity ratio
  • 17.3 Aspects of flow design
  • 17.4 A thumb-nail sketch of transient response
  • 17.4.1 Rationalizations
  • 17.4.2 Specimen temperature solutions
  • 17.5 Wire diameter
  • 17.5.1 Thermal penetration depth
  • 17.5.2 Specifying the wire mesh
  • 17.6 More on intrinsic similarity
  • 18 Son of Schmidt
  • 18.1 Situations vacant
  • 18.2 Analytical opportunities waiting to be explored
  • 18.3 Heat exchange
  • arbitrary wall temperature gradient
  • 18.4 Defining equations and discretization
  • 18.4.1 Ideal gas law
  • 18.4.2 Energy equation
  • variable-volume spaces
  • 18.5 Specimen implementation
  • 18.5.1 Authentication
  • 18.5.2 Function form
  • 18.5.3 Reynolds number in the annular gap
  • 18.6 Integration
  • 18.7 Specimen temperature solutions
  • 19 H2 versus He versus air
  • 19.1 Conventional wisdom
  • 19.2 Further enquiry
  • 19.3 So, why air?
  • 20 The 'hot air' engine
  • 20.1 In praise of arithmetic
  • 20.2 Reynolds number Re in the annular gap
  • 20.3 Contact surface temperature in annular gap
  • 20.4 Design parameter Ldg
  • 20.5 Building a specification
  • 20.6 Design step by step
  • 20.7 Gas path dimensions
  • 20.8 Caveat
  • 21 Ultimate Lagrange formulation?
  • 21.1 Why a new formulation?
  • 21.2 Context
  • 21.3 Choice of display
  • 21.4 Assumptions
  • 21.5 Outline computational strategy
  • 21.6 Collision mechanics.
  • 21.7 Boundary and initial conditions
  • 21.8 Further computational economies
  • 21.9 'Ultimate Lagrange'?
  • Appendix 1 The reciprocating Carnot cycle
  • Appendix 2 Determination of V2 and V4
  • polytropic processes
  • Appendix 3 Design charts
  • A.3.1 Raison dêtre
  • A.3.2 'Additional' dead space
  • A.3.3 Anamorphosis and rectification
  • A.3.4 Post-script
  • Appendix 4 Kinematics of lever-crank drive
  • References
  • Name Index
  • Subject Index.