Programming the Finite Element Method.
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2013.
|
Edición: | 5th ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright; Contents; Preface to Fifth Edition; Acknowledgements; Chapter 1 Preliminaries: Computer Strategies; 1.1 Introduction; 1.2 Hardware; 1.3 Memory Management; 1.4 Vector Processors; 1.5 Multi-core Processors; 1.6 Co-processors; 1.7 Parallel Processors; 1.8 Applications Software; 1.8.1 Compilers; 1.8.2 Arithmetic; 1.8.3 Conditions; 1.8.4 Loops; 1.9 Array Features; 1.9.1 Dynamic Arrays; 1.9.2 Broadcasting; 1.9.3 Constructors; 1.9.4 Vector Subscripts; 1.9.5 Array Sections; 1.9.6 Whole-array Manipulations; 1.9.7 Intrinsic Procedures for Arrays; 1.9.8 Modules.
- 1.9.9 Subprogram Libraries1.9.10 Structured Programming; 1.10 Third-party Libraries; 1.10.1 BLAS Libraries; 1.10.2 Maths Libraries; 1.10.3 User Subroutines; 1.10.4 MPI Libraries; 1.11 Visualisation; 1.11.1 Starting ParaView; 1.11.2 Display Restrained Nodes; 1.11.3 Display Applied Loads; 1.11.4 Display Deformed Mesh; 1.12 Conclusions; References; Chapter 2 Spatial Discretisation by Finite Elements; 2.1 Introduction; 2.2 Rod Element; 2.2.1 Rod Stiffness Matrix; 2.2.2 Rod Mass Element; 2.3 The Eigenvalue Equation; 2.4 Beam Element; 2.4.1 Beam Element Stiffness Matrix.
- 2.4.2 Beam Element Mass Matrix2.5 Beam with an Axial Force; 2.6 Beam on an Elastic Foundation; 2.7 General Remarks on the Discretisation Process; 2.8 Alternative Derivation of Element Stiffness; 2.9 Two-dimensional Elements: Plane Stress; 2.10 Energy Approach and Plane Strain; 2.10.1 Thermoelasticity; 2.11 Plane Element Mass Matrix; 2.12 Axisymmetric Stress and Strain; 2.13 Three-dimensional Stress and Strain; 2.14 Plate Bending Element; 2.15 Summary of Element Equations for Solids; 2.16 Flow of Fluids: Navier-Stokes Equations; 2.17 Simplified Flow Equations; 2.17.1 Steady State.
- 2.17.2 Transient State2.17.3 Convection; 2.18 Further Coupled Equations: Biot Consolidation; 2.19 Conclusions; References; Chapter 3 Programming Finite Element Computations; 3.1 Introduction; 3.2 Local Coordinates for Quadrilateral Elements; 3.2.1 Numerical Integration for Quadrilaterals; 3.2.2 Analytical Integration for Quadrilaterals; 3.3 Local Coordinates for Triangular Elements; 3.3.1 Numerical Integration for Triangles; 3.3.2 Analytical Integration for Triangles; 3.4 Multi-Element Assemblies; 3.5 'Element-by-Element' Techniques; 3.5.1 Conjugate Gradient Method for Linear Equation Systems.
- 3.5.2 Preconditioning3.5.3 Unsymmetric Systems; 3.5.4 Symmetric Non-Positive Definite Equations; 3.5.5 Eigenvalue Systems; 3.6 Incorporation of Boundary Conditions; 3.6.1 Convection Boundary Conditions; 3.7 Programming using Building Blocks; 3.7.1 Black Box Routines; 3.7.2 Special Purpose Routines; 3.7.3 Plane Elastic Analysis using Quadrilateral Elements; 3.7.4 Plane Elastic Analysis using Triangular Elements; 3.7.5 Axisymmetric Strain of Elastic Solids; 3.7.6 Plane Steady Laminar Fluid Flow; 3.7.7 Mass Matrix Formation; 3.7.8 Higher-Order 2D Elements; 3.7.9 Three-Dimensional Elements.