Cavitation and Bubble Dynamics.
Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-Title; Title; Copyright; Dedication; Contents; Preface; Nomenclature; 1 Phase Change, Nucleation, and Cavitation; 1.1 Introduction; 1.2 The Liquid State; 1.3 Fluidity and Elasticity; 1.4 Illustration of Tensile Strength; 1.5 Cavitation and Boiling; 1.6 Types of Nucleation; 1.7 Homogeneous Nucleation Theory; 1.8 Comparison with Experiments; 1.9 Experiments on Tensile Strength; 1.10 Heterogeneous Nucleation; 1.11 Nucleation Site Populations; 1.12 Effect of Contaminant Gas; 1.13 Nucleation in Flowing Liquids; 1.14 Viscous Effects in Cavitation Inception.
- 1.15 Cavitation Inception Measurements1.16 Cavitation Inception Data; 1.17 Scaling of Cavitation Inception; References; 2 Spherical Bubble Dynamics; 2.1 Introduction; 2.2 Rayleigh-Plesset Equation; 2.3 Bubble Contents; 2.4 In the Absence of Thermal Effects; 2.5 Stability of Vapor/Gas Bubbles; 2.6 Growth by Mass Diffusion; 2.7 Thermal Effects on Growth; 2.8 Thermally Controlled Growth; 2.9 Nonequilibrium Effects; 2.10 Convective Effects; 2.11 Surface Roughening Effects; 2.12 Nonspherical Perturbations; References; 3 Cavitation Bubble Collapse; 3.1 Introduction; 3.2 Bubble Collapse.
- 3.3 Thermally Controlled Collapse3.4 Thermal Effects in Bubble Collapse; 3.5 Nonspherical Shape During Collapse; 3.6 Cavitation Damage; 3.7 Damage Due to Cloud Collapse; 3.8 Cavitation Noise; 3.9 Cavitation Luminescence; References; 4 Dynamics of Oscillating Bubbles; 4.1 Introduction; 4.2 Bubble Natural Frequencies; 4.3 Effective Polytropic Constant; 4.4 Additional Damping Terms; 4.5 Nonlinear Effects; 4.6 Weakly Nonlinear Analysis; 4.7 Chaotic Oscillations; 4.8 Threshold for Transient Cavitation; 4.9 Rectified Mass Diffusion; 4.10 Bjerknes Forces; References; 5 Translation of Bubbles.
- 5.1 Introduction5.2 High Re Flows Around a Sphere; 5.3 Low Re Flows Around a Sphere; 5.4 Marangoni Effects; 5.5 Molecular Effects; 5.6 Unsteady Particle Motions; 5.7 Unsteady Potential Flow; 5.8 Unsteady Stokes Flow; 5.9 Growing or Collapsing Bubbles; 5.10 Equation of Motion; 5.11 Magnitude of Relative Motion; 5.12 Deformation Due to Translation; References; 6 Homogeneous Bubbly Flows; 6.1 Introduction; 6.2 Sonic Speed; 6.3 Sonic Speed with Change of Phase; 6.4 Barotropic Relations; 6.5 Nozzle Flows; 6.6 Vapor/Liquid Nozzle Flow; 6.7 Flows with Bubble Dynamics.
- 6.8 Acoustics of Bubbly Mixtures6.9 Shock Waves in Bubbly Flows; 6.10 Spherical Bubble Cloud; References; 7 Cavitating Flows; 7.1 Introduction; 7.2 Traveling Bubble Cavitation; 7.3 Bubble/Flow Interactions; 7.4 Experimental Observations; 7.5 Large-Scale Cavitation Structures; 7.6 Vortex Cavitation; 7.7 Cloud Cavitation; 7.8 Attached or Sheet Cavitation; 7.9 Cavitating Foils; 7.10 Cavity Closure; References; 8 Free Streamline Flows; 8.1 Introduction; 8.2 Cavity Closure Models; 8.3 Cavity Detachment Models; 8.4 Wall Effects and Choked Flows; 8.5 Steady Planar Flows; 8.6 Some Nonlinear Results.