The Theory of Critical Phenomena : an Introduction to the Renormalization Group.
The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Clarendon Press,
1992.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- 1 Introduction
- 1.1 Continuous phase transitions and critical points
- 1.1.1 Divergences and critical exponents
- 1.1.2 Fluctuations and critical opalescence
- 1.2 The order parameter
- 1.2.1 Liquid-gas transition
- 1.2.2 Binary fluids
- 1.2.3 Ferromagnetic/paramagnetic transition
- 1.2.4 Anti-ferromagnetic/paramagnetic transition
- 1.2.5 Helium I/helium II transition
- 1.2.6 Conductor/superconductor transitions
- 1.2.7 Helium three
- 1.3 Correlation functions
- 1.4 Universality
- 1.5 Thermodynamic potentials.
- 1.5.1 The Widom and Kadanoff scaling hypotheses
- 1.6 Why study phase transitions?
- Problems
- 2 Statistical mechanics
- 2.1 Thermodynamic quantities
- 2.2 Fluctuations and correlation functions
- 2.3 Metastability and spontaneous symmetry breaking
- 2.3.1 Metastability
- 2.3.2 Spontaneous symmetry breaking
- Problems
- 3 Models
- 3.1 Description of models
- 3.1.1 The Ising model
- 3.1.2 The lattice gas
- 3.1.3 ß-brass
- 3.1.4 The XY and Heisenberg models
- 3.1.5 Potts model
- 3.1.6 Gaussian and spherical models
- 3.1.7 Percolation model.
- 3.2 Transfer matrices and the Ising ring
- 3.2.1 Solution of the Ising ring
- 3.2.2 Correlation functions
- 3.3 The partition function of the spherical model
- 3.4 High-temperature expansions and the Ising model
- 3.4.1 High-temperature expansions
- 3.4.2 The partition function of the Ising model
- 3.4.3 The correlation functions of the Ising model
- 3.4.4 Numerical evaluation of high-temperature expansions
- Problems
- 4 Numerical simulations
- 4.1 Direct evaluation of thermal averages
- 4.2 Sampling configurations
- 4.2.1 Importance sampling.
- 4.2.2 General structure of numerical algorithms
- 4.3 Monte Carlo methods
- 4.3.1 The Metropolis algorithm
- 4.4 Molecular dynamics
- 4.4.1 Ergodicity and integrability
- 4.4.2 From microcanonical to canonical averages
- 4.5 Langevin equations
- 4.5.1 Comparison of the Langevin and molecular-dynamics methods
- 4.6 Independence of configurations
- 4.6.1 Correlations along the path
- 4.6.2 Critical slowing down
- 4.6.3 The Swendsen-Wang algorithm
- 4.6.4 The Wolff algorithm
- 4.7 Calculation of critical exponents from simulations
- Problems
- 5 Real-space renormalization.
- 5.1 Renormalizing the lattice
- 5.2 Block variables
- 5.3 The renormalization of the Hamiltonian
- 5.3.1 Fixed points
- 5.3.2 The calculation of v
- 5.4 The renormalization of B, M, X and G[sub(c)]
- 5.4.1 The value of }
- 5.4.2 Non-zero external field
- 5.4.3 The renormalization of M, { and G[sub(c)]
- 5.4.4 Critical exponents for the renormalized model
- 5.5 The critical exponents for T = T[sub(c)]
- 5.5.1 The exponent j
- 5.5.2 The exponent e
- 5.6 The critical exponents for T T[sub(c)]
- 5.6.1 The exponent Ý
- 5.6.2 The exponent Þ
- 5.6.3 The exponent Ü