Cargando…

Omics In Soil Science /

Soil is a unique biological system with an abundant microflora and a very high microbial diversity capable of performing multiple key ecosystem functions. The detection of genes in soil has improved the knowledge of unculturable microorganisms and led to a greater understanding of potential soil met...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Nannipieri, Paolo (Editor ), Pietramellara, Giacomo (Editor ), Renella, Giancarlo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wymondham, Norfolk : Caister Academic Press, [2014]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contributors; Preface; 1: Soil as a Biological System; Introduction; Main characteristics of soil as a biological system; Soil biota and their functions in soil; Microbial diversity, soil functions and the holistic approach; The omics approaches in soil; 2: Functional Genomics Analysis of Key Bacterial Traits Involved in Rhizosphere Competence; Introduction; Bacterial species specifically selected by the rhizosphere; Bacterial functions enriched in the rhizosphere; Motility and chemotaxis: early phase traits required for rhizocompetence.
  • Microbial growth in the rhizosphere: the contribution and relevance of central metabolismDenitrification: a promising model linking microbial metabolic flexibility and community structure; Surviving in the rhizosphere: the relevance of stress and detoxification traits; Secretion systems: important functional traits involved in rhizosphere competence; Secondary metabolism: specialized functions involved in competitive rhizosphere fitness; Conclusions and future directions; 3: Soil Metagenomics
  • Potential Applications and Methodological Problems; Introduction.
  • Metagenomics for fostering our understanding of soil habitatsA case study
  • the metagenomics assessment of the chitinolytic process in soil; Metagenomics for bioexploration; The search for novel chitin-degrading enzymes
  • a case study; Outlook; 4: Screening Phylogenetic and Functional Marker Genes in Soil Microbial Ecology; Introduction; Marker genes as biomarkers; Phylogenetic and functional marker genes; Methodologies for marker gene screening in soil samples; Primer and probe designing (non-protein-coding sequences and protein-coding sequences) strategies.
  • Experimental design for screening of the bacterial 16S rDNA marker gene with short read producing high-throughput sequencing technologiesConcluding remarks and potentials; 5: Soil Metatranscriptomics; Introduction; The experimental and bioinformatic workflow; Recent achievements in metatranscriptomics; Conclusions and outlook; 6: Soil Proteomics; Introduction; Soil proteomics; Specificity of soil proteomics; Conclusions; 7: Soil Volatile Organic Compounds as Tracers for Microbial Activities in Soils; Introduction; Soil smells?; Volatiles produced by microorganisms; Volatiles from plant roots.
  • Microbial volatiles affecting plant growthDegradation of VOCs; Retention, emission and measurement; Methods of VOC measurement; Microbial mass products; Conclusions; 8: Proteogenomics: A New Integrative Approach for a Better Description of Protein Diversity; Introduction; The current proteomic tools and approaches; Genome annotation of soil microflora gains in number but not in quality; Proteogenomics, mapping proteome data onto genome sequence; N-terminomics, new tools for an avalanche of results.; Contribution of proteogenomics to a better assessment of soil microflora; Concluding remarks.