Cargando…

Sustainability, energy and architecture : case studies in realizing green buildings /

This unique volume offers insights from renowned experts in energy efficient building from the world over, providing a multi-faceted overview of the state-of-the-art in energy efficient architecture. It opens by defining what constitutes a sustainable building, suggesting bases for sorely needed ben...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sayigh, Ali
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK : Academic Press, 2014.
Edición:First edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler
  • 2. Low Energy Approaches to Design-Led Schemes
  • 134. Webber Street
  • 3. Sustainable Construction Materials / Kenneth Ip
  • 4. The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza
  • 5. Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson
  • 6. Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga
  • 7. The LED Lighting Revolution / Nada El-Zein
  • 8. Minimum Energy Housing in Cuba / Dania Gonzalez Couret
  • 9. Daylighting / Helmut F.O. Mueller
  • 10. Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal
  • 11. Sustainable Buildings in Mediterranean Area / Alessandra Carta
  • 13. Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird
  • 14. Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery
  • 15. Architectural Buildings in Romania / Ruxandra Crutescu
  • 16. Sustainable Architecture in Africa / Manuel Correia Guedes
  • 17. Mud to Skyscraper
  • 1. Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler
  • 1.1. Introduction
  • 1.2. Passive Houses
  • 1.3. Types of Case Studies
  • 1.4. The Veldhuizerschool Ede
  • 1.5. Christiaan Huygens College: an Energy Plus School
  • 1.6. Conventional Dutch Building Design
  • 1.7. Energy Saving Techniques
  • 1.8. Novel Design and Examples
  • 1.9. The TNT Green Office
  • 1.10. Sustainability
  • 1.11. Diverse Sustainability Measures
  • 1.12. Results of GreenCalc+ and LEED Assessment
  • 2. Low Energy Approaches to Design-Led Schemes
  • Five Case Studies / Nazar Sayigh
  • 2.1. Introduction
  • 2.2. Case Studies 1 and 2
  • Overview
  • 2.2.1. 33
  • 134. Webber Street
  • Case Study 1
  • 2.2.2. Stead Street Development, Southwark, London
  • Case Study 2
  • 2.3. Case Study 3
  • Overview
  • 2.3.1. Multi-Purpose Hall, Tower House Scholl, Sheen, Richmond, London
  • Case Study 3
  • 2.4. Case Studies 4 & 5
  • Overview
  • 2.4.1. Black Diamond House, Tutti Frutti, New Islington, Manchester
  • Case Study 4
  • 2.4.2. Unit 2, The Light Works, Brixton, London
  • Case Study 5
  • 2.5. Conclusion
  • 3. Sustainable Construction Materials / Kenneth Ip
  • 3.1. Introduction
  • 3.1.1. World Resources
  • 3.2. Demand for Construction Materials
  • 3.3. Material Resources
  • 3.4. Renewable Materials
  • 3.5. Recycled Materials
  • 3.6. Life Cycle Analysis
  • 3.7. Embodied Energy
  • 3.8. Gross Energy Requirement
  • 3.9. Process Energy Requirement
  • 3.10. Embodied Carbon
  • 3.11. Natural Building Materials
  • 3.11.1. Renewable Construction Materials: Timber
  • 3.12. Short Rotation Renewable Materials
  • 3.12.1. Hemp
  • 3.13. Summary
  • 4. The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza
  • 4.1. Introduction
  • 4.2. Sustainable Innovation, or the Tried and Tested
  • 4.3. The 20th Century, the Corporate Image and Sustainability
  • 4.4. The Techno-Centric Sustainable Building in the 21st Century
  • 4.5. The Sustainable Working Shed, Lion House, Alnwick, Northumberland, UK
  • 4.5.1. Sustainable Architecture, An Experiential Sensory Approach
  • 4.6. Experiencing Renewables in Building Skins
  • 4.7. The Responsive Skin and Corporate Image
  • 4.8. Increasing Facade Layers: Double Skin Facades as a Passive Measure and a Cultural Message
  • 4.9. Sustainability as Haptic Experience
  • Conclusions
  • 5. Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson
  • 5.1. Introduction
  • 5.2. Building Materials and Assemblies
  • 5.2.1. The Cost of Insulation vs. the Cost of Fuel
  • 5.3. Ventilation and Air Movement
  • 5.4. Case Studies
  • 5.4.1. Case Study: A Larsen Truss `Chainsaw Retrofit', Regina, Saskatchewan
  • 5.4.2. Case Study: Interior Above and Below Grade Insulation, Halifax, Nova Scotia
  • 5.4.3. Case Study: Exterior Insulation Above Grade/Interior Insulation Below Grade, Halifax, Nova Scotia and Utica, New York
  • 5.5. Vision: Deep Energy Retrofits and Neighborhood Energy Systems
  • 5.6. What Can We Do to Improve the Teaching of Architects?
  • 6. Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga
  • 6.1. Introduction
  • 6.1.1. The Dubai Story
  • 6.2. Climate Change: Cities and Buildings
  • 6.3. Importance of Sustainable/Green Building
  • 6.4. Sustainability Regulations and Laws Contributing to Carbon Emissions Reduction
  • 6.4.1. How does Dubai Measure Up?
  • 6.4.2. Europe
  • 6.4.3. The United Kingdom
  • 6.4.4. Australia
  • 6.4.5. New Zealand
  • 6.4.6. Dubai Green Building Policy
  • 6.4.7. Dubai's Iconic Building
  • -Burj Khalifa
  • 6.5. Taxonomy of a Sustainable Building
  • 6.6. Green Buildings in Dubai, UAE
  • 6.6.1. Case Studies
  • -New Buildings
  • 6.6.2. Case Studies
  • -Existing Buildings
  • 6.7. Conclusions
  • 7. The LED Lighting Revolution / Nada El-Zein
  • 7.1. Introduction
  • 7.1.1. History of LED (Light Emitting Diode) Technology and a Brief Technical Background
  • 7.2. From LED Chips to Fixtures
  • 7.2.1. Thermal Management
  • 7.2.2. Drivers (also Transformer and Power Supply)
  • 7.3. Optics
  • 7.4. Fixture Body
  • 7.5. Advantages and Features
  • 7.5.1. Long Operating Life
  • 7.5.2. Environmentally Safe (no Mercury)
  • 7.5.3. Significantly Reduced Heat Radiation
  • 7.5.4. Flicker Free and Instant Turn on
  • 7.5.5. Unaffected by Frequent on/off
  • 7.5.6. Dimmability and Controllability
  • 7.5.7. Durability
  • 7.5.8. Minimal Light Loss
  • 7.6. Comparisons with Traditional Lighting
  • 7.6.1. Comparison with Halogen and Incandescent Lighting
  • 7.6.2. Comparison with CFLs
  • 7.6.3. Comparison with Fluorescent Tubes
  • 7.7. Architectural/General Illumination Applications
  • . 7.7.1. Color Changing/Outdoor Wall Washing
  • 7.7.2. Residential/Retail
  • 7.7.3. Office Lighting
  • 7.8. Case Studies
  • 7.8.1. Argo Tea
  • Chicago and New York City, USA
  • 7.8.2. Shangri-la Hotel, Abu Dhabi, UAE
  • 7.8.3. Sons of the Revolution Museum, NYC, USA
  • 7.8.4. Radisson Hotel, Dubai, UAE
  • 7.9. Future/Novel Designs Possible with LEDs
  • 7.10. Conclusions
  • 8. Minimum Energy Housing in Cuba / Dania Gonzalez Couret
  • 8.1. Introduction
  • 8.2. Life Cycle and Sustainable Buildings
  • 8.3. Design Strategies in Warm and Humid Climates
  • 8.4. The Urban Microclimate
  • 8.5. Vernacular Architecture in Cuba
  • 8.6. Modern Architecture in Cuba
  • 8.7. Present and Future
  • 8.7.1. Isolated, Rural and Suburban Housing
  • 8.7.2. Multifamily Urban Housing
  • 8.8. Final Remarks
  • 9. Daylighting / Helmut F.O. Mueller
  • 9.1. Introduction
  • 9.2. Characteristics and Availability
  • 9.3. Photometric Units
  • 9.4. Colors
  • 9.5. Daylight Availability
  • 9.6. Performance of Daylighting
  • 9.7. Comfort and Health
  • 9.7.1. Circadian Effects
  • 9.7.2. Seasonal Affective Disorder
  • 9.7.3. Vitamin D
  • 9.7.4. View Out
  • 9.7.5. Glare
  • 9.7.6. Color
  • 9.8. Visual Performance
  • 9.9. Daylight Factor
  • 9.10. Thermal Comfort and Energy Use
  • 9.11. Daylighting Design
  • 9.11.1. Urban Design
  • 9.11.2. Building and Room Design
  • 9.11.3. Window and Skylight Design
  • 9.12. Daylighting Systems and Solar Control
  • 9.12.1. Glazing
  • 9.12.2. Diffuse Skylight Transmission
  • 9.12.3. Direct Sunlight Redirection
  • 9.12.4. Light Scattering or Diffusing
  • 9.12.5. Light Transport
  • 9.13. Energy Saving and Daylight Responsive Controls
  • 9.13.1. Lighting Control
  • 9.13.2. Window Control
  • 9.13.3. Energy
  • 9.14. Design Tools
  • 10. Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal
  • 10.1. Introduction
  • 10.2. Background
  • 10.2.1. Geography and Climate of Yemen
  • 10.2.2. Architecture
  • 10.2.3. Thermal Performance of the Vernacular House
  • 10.3. Theoretical Model for Sustainable Architecture
  • 10.3.1. Form-Space Relationship Model
  • 10.4. Analysis
  • 10.4.1. The Urban Garden and the Social Square Setting
  • 10.4.2. Tower House Setting
  • 10.4.3. Building Skin and Multi-component Window Setting
  • 10.4.4. Relationships Between Factors
  • 10.4.5. Influence on Form and Space Design
  • 10.5. Conclusion
  • Appendix A Sustainable Design Guidelines Derived From Response of Architectural Form and Space to Climatic and Functional Factors
  • Appendix B A Comparison between a Vertical Form and a Horizontal Form
  • 11. Sustainable Buildings in Mediterranean Area / Alessandra Carta
  • 11.1. Abitare Mediterraneo Project
  • 11.2. EULEB
  • 11.2.1. Location
  • 11.2.2. Building Classification
  • 11.3. Technological and Business Incubator
  • Lucca, Italy
  • 11.3.1. Identification
  • 11.3.2. General Data
  • 11.3.3. Outdoor and Indoor Climate
  • 11.3.4. Insulation
  • 11.3.5. Solar Control
  • 11.3.6. Cooling
  • 11.3.7. Ventilation
  • 11.3.8. Energy Performance
  • 11.3.9. Monitored Comfort
  • 11.3.10. User Acceptance
  • 11.3.11. Financial Data
  • 11.4. Bardini Museum
  • Florence, Italy
  • 11.4.1. General Data
  • 11.4.2. Identification
  • 11.4.3. Outdoor and Indoor Climate
  • 11.4.4. Solar Control
  • 11.4.5. Lighting
  • 11.4.6. Cooling
  • 11.4.7. Ventilation
  • 11.4.8. Energy Performance
  • 11.4.9. Monitored Comfort
  • 11.4.10. User Acceptance
  • 11.4.11. Financial Data
  • 11.5. New Meyer Hospital
  • Florence, Italy
  • 11.5.1. General Data
  • 11.5.2. Identification
  • 11.5.3. Outdoor and Indoor Climate
  • 11.5.4. Green Roof
  • 11.5.5. Solar Control
  • 11.5.6. Heating
  • 11.5.7. Cooling
  • 11.5.8. Ventilation
  • 11.5.9. Renewable Energy
  • 11.5.10. Co-Generation
  • 11.5.11. Energy Performance
  • 11.5.12. Monitored Comfort
  • 11.5.13. User Acceptance
  • 11.5.14. Financial Data
  • 11.6. Primary School
  • Empoli, Italy
  • 11.6.1. General Data
  • 11.6.2. Identification
  • 11.6.3. Outdoor and Indoor
  • 11.6.4. Insulation
  • 11.6.5. Solar Control
  • 11.6.6. Lighting
  • 11.6.7. Heating
  • 11.6.8. Natural Ventilation
  • 11.6.9. Cooling
  • 11.6.10. Monitored Comfort
  • 11.6.11. User Acceptance
  • 11.6.12. Financial Data
  • 11.7. Malta Stock Exchange
  • La Villetta, Malta
  • 11.7.1. General Data
  • 11.7.2. Identification
  • 11.7.3. Outdoor and Indoor Climate
  • 11.7.4. Ventilation
  • 11.7.5. Energy Performance
  • 11.7.6. Monitored Comfort
  • 11.7.7. User Acceptance
  • 11.7.8. Financial Data
  • . Contents note continued: 12. A Low-Energy Building Project in Sweden
  • the Lindas Pilot Project / Bahram Moshfegh
  • 12.1. Introduction
  • 12.2. The Building's Energy Systems and Buildings in Energy Systems
  • 12.3. Energy Use in Swedish Building Sector
  • 12.4. Energy Use in Residential Buildings
  • 12.4.1. District Heating is an Efficient, Clean and Environmentally Sound Form of Heating
  • 12.4.2. The Role of District Heating Systems as an Energy Source in Low-Energy Buildings
  • 12.5. New Technologies that Make Buildings more Energy-Efficient and Environmentally Sound
  • 12.6. Action Plans and Energy Policies to Achieve Energy-Efficient Buildings
  • 12.7. Building and the Health of Occupants
  • 12.8. Some Examples of Low-Energy Buildings in Sweden
  • 12.9. Energy-Efficient Buildings and Cities
  • a Strategic Direction for Urban Policy Makers
  • 12.10. The Swedish Lindas Pilot Project
  • Houses without Heating Systems
  • 12.10.1. Description of the Lindas Buildings
  • 12.10.2. Energy Usage
  • Measurements and Building Energy Simulations
  • 12.10.3. Indoor Environmental
  • 12.10.4. Environmental Performance and Embodied Energy
  • 13. Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird
  • 13.1. Introduction
  • 13.2. The Buildings and their Users
  • 13.3. Survey Methodology and Analytical Procedures
  • 13.4. Design Features of Buildings with High Summary Indices
  • 13.4.1. NRG Systems Facility, Vermont, USA
  • Figures 13.1 and 13.2
  • 13.4.2. Torrent Research Centre, Ahmedabad, India
  • Figures 13.3 and 13.4
  • 13.4.3. Natural Resources Defense Council, California, USA
  • Figures 13.5 and 13.6
  • 13.4.4. Military Families Resource Centre, Toronto, Canada
  • Figures 13.7 and 13.8
  • 13.4.5. The Erskine Building, Canterbury University, New Zealand
  • Figures 13.9 and 13.10
  • 13.4.6. St Mary's Credit Union, Navan, Ireland
  • Figures 13.11 and 13.12
  • 13.4.7. 40 Albert Road, South Melbourne, Victoria, Australia
  • Figures 13.13 and 13.14
  • 13.4.8. Ministry of Energy, Water and Communications, Putrajaya, Malaysia
  • Figures 13.15 and 13.16
  • 13.4.9. 60 Leicester Street, Melbourne, Australia
  • Figures 13.17 and 13.18
  • 13.4.10. AUT Akoranga, Auckland, New Zealand
  • Figures 13.19 and 13.20
  • 13.5. Key Characteristics and Common Features of these Sustainable Buildings
  • Acknowledgments
  • Appendix Calculation of Indices
  • 14. Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery
  • 14.1. Background and Present Situation
  • 14.2. Traditional Architecture; The Outcome of a Complex Thinking System
  • 14.3. Traditional Architecture and Adaptive Response to Climate
  • 14.3.1. Courtyards
  • 14.3.2. Apertures
  • 14.3.3. Material and Thermal Mass
  • 14.4. Wind Catcher/Tower
  • 14.5. Spatial Organization: A Means to Adapt to Culture and Climate
  • 14.6. Conclusion
  • Acknowledgments
  • 15. Architectural Buildings in Romania / Ruxandra Crutescu
  • 15.1. One Family House in Burlusi Ciofringeni, Arges County, Romania
  • 15.2. Amvic Passive Office Building
  • Bragadiru, Ilfov County, Romania
  • 15.2.1. Planning Concept
  • 15.2.2. Building Construction
  • 15.2.3. Building Envelope
  • 15.2.4. The Heating System and Controlled Ventilation System
  • 15.2.5. Vacuum Solar Collectors
  • 15.2.6. Analysis and Monitoring Data
  • 15.3. Residential Living Units in Cluj Napoca, Cluj County, Romania
  • 15.4. Two Passive Houses in Caransebes, Caras-Severin County, Romania
  • 15.5. Church in Bistra, Neamt County, Romania
  • Low-Energy Building
  • 15.6. Conclusions
  • 16. Sustainable Architecture in Africa / Manuel Correia Guedes
  • 16.1. Introduction
  • 16.2. Bioclimatic Project: General Guidelines
  • 16.3. Climatic Context
  • 16.4. Building Location, Form and Orientation
  • 16.5. Shading
  • 16.6. Envelope Coatings
  • 16.7. Insulation
  • 16.8. Window Size and Glazing Type
  • 16.9. Natural Ventilation
  • 16.10. Thermal Mass
  • 16.11. Evaporative Cooling
  • 16.12. Control of Internal Gains
  • 16.13. The Use of Environmental Controls
  • 16.14. Passive Design and Thermal Comfort Criteria
  • 17. Mud to Skyscraper
  • Building Revolution in 50 Years in the Middle East / Ali Sayigh
  • 17.1. Portable Housing: The Bedouin Tent
  • 17.2. Mud Houses and Comfort
  • 17.3. A New Generation of Buildings
  • 17.4. What is the Solution?
  • 17.5. Energy and Buildings
  • 17.6. Final Remarks.