Cargando…

Path integrals, hyperbolic spaces and selberg trace formulae /

In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grosche, C. (Christian), 1956-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Springer, 2013.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn861528241
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 130916s2013 nyu ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d N$T  |d ZCU  |d OCLCF  |d EBLCP  |d N15  |d DEBSZ  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d STF  |d VTS  |d NRAMU  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 858763089  |a 961602025  |a 962575430  |a 1058832897 
020 |a 9789814460088  |q (electronic bk.) 
020 |a 9814460087  |q (electronic bk.) 
020 |z 9789814460071 
029 1 |a DEBBG  |b BV043040066 
029 1 |a DEBBG  |b BV044063228 
029 1 |a DEBSZ  |b 393923320 
029 1 |a DEBSZ  |b 421243406 
029 1 |a DEBSZ  |b 454999097 
029 1 |a NZ1  |b 15920727 
035 |a (OCoLC)861528241  |z (OCoLC)858763089  |z (OCoLC)961602025  |z (OCoLC)962575430  |z (OCoLC)1058832897 
050 4 |a QC174.17.P27  |b G76 2013eb 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
049 |a UAMI 
100 1 |a Grosche, C.  |q (Christian),  |d 1956-  |1 https://id.oclc.org/worldcat/entity/E39PCjvP3yM849pYmrKVypy7d3 
245 1 0 |a Path integrals, hyperbolic spaces and selberg trace formulae /  |c Christian Grosche. 
250 |a Second edition. 
264 1 |a New York :  |b Springer,  |c 2013. 
300 |a 1 online resource (389 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed September 16, 2013). 
546 |a English. 
505 0 |a 1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook. 
520 |a In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super- ) trace formula. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Path integrals. 
650 0 |a Quantum theory. 
650 6 |a Intégrales de chemin. 
650 6 |a Théorie quantique. 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Path integrals  |2 fast 
650 7 |a Quantum theory  |2 fast 
758 |i has work:  |a Path integrals, hyperbolic spaces, and Selberg trace formulae (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFXKmvHcRMrY6v6WRFVxTb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Grosche, C.  |t Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae.  |d Singapore : World Scientific Publishing Company, ©2013  |z 9789814460071 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1389085  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1389085 
938 |a ebrary  |b EBRY  |n ebr10756245 
938 |a EBSCOhost  |b EBSC  |n 637088 
994 |a 92  |b IZTAP