Cargando…

Ill-posed problems with a priori information /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vasin, V. V.
Otros Autores: Ageev, A. L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Utrecht, The Netherlands : VSP BV, 1995.
Colección:Inverse and ill-posed problems series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn861527497
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 040819s1995 ne a ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d DEBBG  |d EBLCP  |d OCLCF  |d OCLCQ  |d COCUF  |d STF  |d MERUC  |d LOA  |d ZCU  |d ICG  |d OCLCQ  |d K6U  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922945933  |a 992923013 
020 |a 9783110900118  |q (e-book) 
020 |a 3110900114  |q (e-book) 
020 |z 9789067641913 
029 1 |a DEBBG  |b BV042353257 
029 1 |a DEBBG  |b BV043016692 
029 1 |a DEBSZ  |b 478034334 
035 |a (OCoLC)861527497  |z (OCoLC)922945933  |z (OCoLC)992923013 
050 4 |a QA377  |b .V334 1995eb 
082 0 4 |a 515.353  |2 23 
049 |a UAMI 
100 1 |a Vasin, V. V. 
245 1 0 |a Ill-posed problems with a priori information /  |c V.V. Vasin and A.L. Ageev. 
264 1 |a Utrecht, The Netherlands :  |b VSP BV,  |c 1995. 
300 |a 1 online resource (265 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Inverse and ill-posed problems series 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a ""Introduction""; ""CHAPTER 1. UNSTABLE PROBLEMS""; "" 1 Base formulations ofproblems""; ""1.1. Operator equations and systems""; ""1.2. The eigen-subspace determination of a linear operator""; "" 2 Ill-posed problems examples and its stability analysis""; ""2.1. The problem of gravimetry""; ""2.2. Integral equations in structure investigations of disorder materials""; ""2.3. The computerized tomography""; ""Â3 The classification of methods for unstable problems with a priori information""; ""3.1. Tikhonovâ€?s method""; ""3.2. The compact imbedding method"" 
505 8 |a ""3.3. Linear iterative processes""""3.4. Î"-processes""; ""3.5. The descriptive regularization""; ""3.6. Iterative processes with quasi-contractions""; ""3.7. The iterative regularization method""; ""3.8. Combined methods""; ""3.9. Method of the regularization and penalties""; ""3.10. Methods of the mathematical programming""; ""CHAPTER 2. ITERATIVE METHODS FOR APPROXIMATION OF FIXED POINTS AND THEIR APPLICATION TO ILL-POSED PROBLEMS""; ""Â 1 Basic classes of mappings""; ""1.1. Quasi-nonexpansive and pseudo-contractive mappings""; ""1.2. Existence of fixed points"" 
505 8 |a ""Â 2 Convergence theorems for iterative processes""""2.1. Strong convergence of iterations for quasi-contractions""; ""2.2. Weak convergence of iterations for pseudo-contractions""; ""Â 3 Iterations with correcting multipliers""; ""3.1. Stability of fixed points from parameter""; ""3.2. Strong iterative approximation of fixed points""; ""3.3. Generalization of results to quasi-nonexpansive operators""; ""Â 4 Applications to problems of mathematical programming""; ""4.1. Setting of a problem and definition of well-posedness""; ""4.2. Prox-algorithm for minimization of convex functional"" 
505 8 |a ""4.3. Fejer processes for convex inequalities system""""4.4. Iterative processes for solution of operator equations with a priori information""; ""4.5. The gradient projection method for convex functional""; ""4.6. Minimization of quadratic functional""; ""Â 5 Regularizing properties of iterations""; ""5.1. Iterations with perturbed data and construction of regularizing algorithm""; ""5.2. Disturbance analysis for the Fejer processes""; ""5.3. Analysis of solution stability in the projection gradient method""; ""Â 6 Iterative processes with averaging"" 
505 8 |a ""6.1. Formulation of the method and preliminary results""""6.2. The convergence theorem""; ""6.3. Stability with respect to perturbations. Weak regularization""; ""6.4. The Mann iterative processes""; ""Â 7 Iterative regularization of variational inequalities and of operator equations with monotone operators""; ""7.1. Formulation of problem""; ""7.2. The method of successive approximation in well-posed case""; ""7.3. Convergence of the iteratively regularized method of successive approximations""; ""7.4. Strong convergence of the Mann processes"" 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Approximation theory. 
650 0 |a Differential equations, Partial  |x Improperly posed problems. 
650 0 |a Iterative methods (Mathematics) 
650 6 |a Théorie de l'approximation. 
650 6 |a Équations aux dérivées partielles  |x Problèmes mal posés. 
650 6 |a Itération (Mathématiques) 
650 7 |a Approximation theory  |2 fast 
650 7 |a Differential equations, Partial  |x Improperly posed problems  |2 fast 
650 7 |a Iterative methods (Mathematics)  |2 fast 
700 1 |a Ageev, A. L. 
758 |i has work:  |a Ill-posed problems with a priori information (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFJFjD4GyvjjK6QDG99bMK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Vasin, V.V.  |t Ill-posed problems with a priori information.  |d Utrecht, The Netherlands : VSP BV, 1995.  |h ix, 255 pages : illustrations ; 24 cm.  |k Inverse and ill-posed problems series  |z 9789067641913 
830 0 |a Inverse and ill-posed problems series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3042967  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3042967 
938 |a ebrary  |b EBRY  |n ebr10755143 
994 |a 92  |b IZTAP